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Abstract: In recent times, attention has been directed to the problem of solving the Poisson

equation, either in engineering scenarios (computational) or in regard to crystal structure

(theoretical). Herein we study a class of lattice sums that amount to Poisson solutions, namely

the n-dimensional forms

φn(r1, . . . , rn) =
1

π2

∑
m1,...,mn odd

eiπ(m1r1+···+mnrn)

m2
1 + · · ·+m2

n

.

By virtue of striking connections with Jacobi ϑ-function values, we are able to develop new

closed forms for certain values of the coordinates rk, and extend such analysis to similar

lattice sums. A primary result is that for rational x, y, the natural potential φ2(x, y) is 1
π

logA

where A is an algebraic number. Various extensions and explicit evaluations are given. Such

work is made possible by number-theoretical analysis, symbolic computation and experimental

mathematics, including extensive numerical computations using up to 20,000-digit arithmetic.
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1. About this paper

In this paper, we analyze various generalized lattice sums [7], which have been studied for

many years in the mathematical physics community, for example in [7, 13, 14] and a recent

fascinating work on cyclotomic polylogarithms and corresponding multiple harmonic sums [1].

Recently our own interest has been triggered by some intriguing research in practical image

processing techniques [9]. These developments have underscored the need to better understand

the underlying theory behind both lattice sums and the associated Poisson potential functions.

To that end, we present a number of results, perhaps the most notable of which is the

remarkable fact that, for rational x and y, the most natural two-dimensional Poisson potential

function satisfies

φ2(x, y) =
1

π2

∑
m,n odd

cos(mπx) cos(nπy)

m2 + n2
=

1

π
logA, (1)

where A is an algebraic number, or, in other words, the root of an integer polynomial, whose

degree and coefficients depend on x and y.

In Section 2, we describe, consistent with [9], the underlying equations along with “natural”

Madelung constants and relate them to the classical Madelung constants. In Section 3, we

produce the solution φn which, especially with n = 2, provide the central objects of our study.

In Section 4, we develop rapid methods of evaluating φn.

These fast methods are used in Section 5 to experimentally determine closed-form

evaluations for φ2(x, y) for some specific x and y, such as

π2 φ2(1/5, 2/5) =
∑

m,n odd

cos(mπ/5) cos(2nπ/5)

m2 + n2

?
=

π

16
log 5. (2)

We are also able to prove a few of the simpler evaluations (see Theorem 3 and Appendices

I and III). From this and further computational evidence, we conjectured the algebraic result

mentioned above in (1), which is stated and proven as Theorem 10 of Section 6. This result

was made possible because earlier in Section 6 we relate φ2, and its counterpart sum over even

integers ψ2, in terms of general Jacobean theta functions ϑk(z, q) for k = 1, ..., 4. In Section

6.4, we also touch on generalizations to sums of the form

φ2(x, y, d) :=
1

π2

∑
m,n odd

cos(πmx) cos(πn
√
d y)

m2 + dn2
, (3)

for rational d > 0.

In Section 7, we describe the quite extensive and challenging computational experiments

we have undertaken, and summarize the results in tabular form. In Section 8, we briefly look

at the state of our knowledge in three and four dimensions. Finally, in three Appendices, we

present some additional details of our proofs via factorization of lattice sums.
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2. Madelung entities

In a recent treatment of ‘natural’ Madelung constants [9] it is pointed out that the Poisson

equation for an n-dimensional point-charge source,

∇2Φn(r) = − δ(r), (4)

gives rise to an electrostatic potential—we call it the bare-charge potential—of the form

Φn(r) =
Γ(n/2− 1)

4πn/2
1

rn−2
=:

Cn
rn−2

, if n 6= 2, (5)

Φ2(r) = − 1

2π
log r =: C2 log r, (6)

where r := |r|. Since this Poisson solution generally behaves as r2−n, the previous work [9]

defines a “natural” Madelung constant Nn as (here, m := |m|):

Nn := Cn

′∑
m∈Zn

(−1)1·m

mn−2
, if n 6= 2, (7)

N2 := C2

′∑
m∈Zn

(−1)1·m logm,

where in cases such as this log sum one must infer an analytic continuation [9], as the literal

sum is quite non convergent. This Nn coincides with the classical Madelung constant

Mn :=

′∑
m∈Zn

(−1)1·m

m
(8)

only for n = 3 dimensions, in which case N3 = 1
4π
M3. But in all other dimensions there is no

obvious M,N relation.

A method for gleaning information about Nn is to contemplate the Poisson equation with

a crystal charge source, modeled after NaCl (salt) in the sense of alternating lattice charges:

∇2φn(r) = −
∑

m∈Zn

(−1)1·mδ(m− r). (9)

Accordingly—based on the Poisson equation (4)—solutions φn can be written in terms of the

respective bare-charge functions Φn, as

φn(r) =
∑

m∈Zn

(−1)1·mΦn(r−m). (10)

2.1. Madelung variants

We have defined the classical Madelung constants (8) and the “natural Madelung constants

(7). Following [9], we define a Madelung potential, now depending on a complex s and spatial
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point r ∈ Zn:

Mn(s, r) :=
∑
p∈Zn

(−1)1·p

|p− r|s
, (11)

We can write limit formulae for our Madelung variants, first the classical Madelung constant

Mn := lim
r→0

(
Mn(1, r)− 1

r

)
(12)

=

′∑
p∈Zn

(−1)1·p

p
, (13)

and then the “natural” Madelung constant

Nn := lim
r→0

(φ(r)− Φ(r)) (14)

= Cn

′∑
p∈Zn

(−1)1·p

pn−2
. (15)

For small even n this last sum is evaluable. For example, from [6, Eqn. (9.2.5)] we have
′∑

p∈Z4

(−1)1·p

p2s
= (1− 22−s)(1− 21−s)ζ(s)ζ(s− 1), (16)

which with s = 1 yields

N4 = − 1

π2
log 2.

Similarly [6, Exercise 4b), p. 292] derives
′∑

p∈Z8

(−1)1·p

p2s
= − 16(1− 24−s)ζ(s)ζ(s− 3), (17)

which with s = 3 determines that

N8 = − 4

π4
ζ(3).

Generally, via the Mellin transform Msϑ
2n
4 (q), see below, for small n values of N2n are

similarly susceptible. For instance with G denoting Catalan’s constant

N6 = − 1

24π
− 2G

π3
,

given in [9]. The more complex value N2 is presented in (26).
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2.2. Relation between crystal solutions φn and Madelung potentials

From (5), (10), and (11) we have the general relation for dimension n 6= 2,

φn(r) = CnMn(n− 2, r). (18)

Note that for the case n = 3, the solution φ3 coincides with the classical Madelung potential

M3(1, r) in the sense

φ3(r) =
1

4π
M3(1, r),

because C3 = 1/(4π). Likewise, the “natural” and classical Madelung constants are related

4πN3 = M3. The whole idea of introducing ‘natural’ Madelung constants Nn is that this

coincidence of radial powers for φ and M potentials holds only in 3 dimensions. For example,

in n = 5 dimensions, the summands for φ5 and M5(1, ·) involve radial powers 1/r3, as in

φ5(r) =
1

8π2
M5(3, r).

3. The crystal solutions φn

In [9] it is argued that a solution to (9) is

φn(r) =
1

π2

∑
m∈On

∏n
k=1 cos(πmkrk)

m2
, (19)

where O denotes the odd integers (including negative odds). These φn do give the potential

within the appropriate n-dimensional crystal, in that φn vanishes on the surface of the cube

[−1/2, 1/2]n, as is required via symmetry within an NaCl-type crystal of any dimensions. To

render this representation more explicit and efficient, we could write equivalently

φn(r) =
2n

π2

∑
m1,...,mn> 0, odd

cos(πm1r1) · · · cos(πmnrn)

m2
1 + · · ·m2

n

.

It is also useful that—due to the symmetry inherent in having odd summation indices—we can

cavalierly replace the cosine product in (19) with a simple exponential:

φn(r) =
1

π2

∑
m∈On

eiπm·r

m2
. (20)

This follows from the simple observation that
∏

exp(πimkrk) =
∏

(cos(πmkrk) + i sin(πmkrk)),

so when the latter product is expanded out, the appearance of even a single sin term is

annihilating, due to the bipolarity of every index mk.
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We observe that convergence of these conditionally convergent sums is by no means obvious

but that results such as [7, Thm. 8.3 & Thm. 8.5] ensure that

φn(r, s) :=
1

π2

∑
m∈On

∏n
k=1 cos(πmkrk)

m2s
, (21)

is convergent and analytic with abscissa σ0 for (n − 1)/4 ≤ σ0 ≤ (n − 1)/2 where Re(s) = σ.

For the central case herein, summing over increasing spheres is analytic in two dimensions

for σ0 ≤ 23/73 < 1/2 and in three dimensions for σ0 ≤ 25/34 < 1, but in general the best

estimate we have is σ0 ≤ n/2 − 1, so for n ≥ 5 to avoid ambiguity we work with the analytic

continuation of (21) from the region of absolute convergence with σ > n/2. Indeed, all our

transform methods are effectively doing just that.

4. Fast series for φn

From previous work [9] we know a computational series

φn(r) =
1

2π

∑
R∈On−1

sinh(πR(1/2− |r1|)
∏n−1

k=1 cos(πRkrk+1)

R cosh(πR/2)
, (22)

suitable for any nonzero vector r ∈ [−1/2, 1/2]n. The previous work also gives an improvement

in the case of n = 2 dimensions, namely the following form for which the logarithmic singularity

at the origin has been siphoned off:

φ2(x, y) =
1

4π
log

cosh(πx) + cos(πy)

cosh(πx)− cos(πy)
− 2

π

∑
m∈O+

cosh(πmx) cos(πmy)

m(1 + eπm)
. (23)

These series, (22) and (23) are valid, respectively, for r1, x ∈ [−1, 1].

For clarification, we give here the (n = 3)-dimensional case of the fast series:

φ3(x, y, z) =
2

π

∑
p,q > 0, odd

sinh
(
π
2

√
p2 + q2 (1− 2|x|)

)
cos(πpy) cos(πqz)√

p2 + q2 cosh
(
π
2

√
p2 + q2

) . (24)

Though it may not be manifest in this asymmetrical-looking series, it turns out that for any

dimension n the φn(r1, · · · rn) is invariant under permutations and sign-flips. For example,

φ3(x, y, z) = φ3(−y, z,−x) and so on. It thus behooves the implementor to consider x—which

appears only in the first sum of (24)—to be the largest in magnitude of the three coordinates, for

optimal convergence. A good numerical test case which we mention later is the exact evaluation

φ3(1/6, 1/6, 1/6) =
√

3
4π
, which we have confirmed to 500 digits.
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With n > 2 it is not clear how best to isolate the (r = 0) singularity in higher dimensions.

One approach—possibly not optimal, is to derive [9]

Nn = Cn

′∑
m∈Z+(n−1)

(−1)1·m

mn−2
− 1

π

∑
R∈On−1

1

R(1 + eπR)
, if n 6= 2 (25)

then employ a fast series for the Cn
∑′

term [9]. In fact, it is often possible to give this m-sum

here a closed form [9], so that a great many Nn are now resolved. (More generally speaking,

we cannot yet resolve any of the Nodd n>1.)

4.1. Closed form for the “natural’ Madelung constant N2

The (n = 2)-dimensional natural Madelung constant has also been resolved on the basis of (23)

(see [9]), to take the value

N2 =
1

4π
log

4 Γ4(3/4)

π3
. (26)

We remind ourselves that this closed form was achieved by contemplating the limiting process

r→ 0, and hence Coulomb-singularity removal.

We also record the following numerically effective Mellin transform for n > 2

Nn = − 1

4π

∫ ∞
0

(
1− ϑn4

(
e−πx

))
xn/2−2 dx < 0, (27)

where the integral is positive since 0 < ϑ4(q) < 1 for 0 ≤ q ≤ 1.

From this the large n behavior of Nn may be estimated as

Nn � −
Γ(n/2− 1)

πn/2
·
(
n

2
− n(n− 1)

2n/2
+ ...

)
, (28)

on approximating ϑ4 (q) = 1 − 2q + O (q4) and 1 − xn = −n(x − 1) + n(n − 1)/2 (x − 1)2 +

O
(
(x− 1)3) and then integrating term-by-term. For instance, from (27) we compute

N100 = −8.6175767047403040779...× 1037

while the asymptotic (28) gives

N100 � −8.6175767047403038...× 1037.

Indeed, we can make effective estimates, as in:

Theorem 1 (Effective bounds on Nn). For integer n > 2 we have

−1 +
n

2n/2−1
>

Nn(
Γ(n/2−1)

πn/2
n
2

) > −1. (29)
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Proof. Let q := exp(−πt) and note

1− 2q ≤ ϑ4(q) ≤ 1− 2q + 2q4.

Now for any x ∈ (0, 1) and positive integer n it is elementary that

1− nx ≤ (1− x)n ≤ 1− nx+ n(n− 1)x2/2.

Putting x := ϑ4(q) here, knowing x ∈ [1− 2q, 1− 2q + 2q4] in the integral representation (27)

quickly gives both bounds of the theorem.

Remark 2. Another approach to these effective error bounds is to note

Nn = Cn
∑
N≥1

rn(N)(−1)N

Nn/2−1
,

where rn(N) counts the number of n-square representations of N . Indeed, the first asymptotic

terms in (28) arise immediately from the observation

rn(1) = 2n,

as every representation of 1 is (±1)2 + 02 + . . .+ 02, and similarly

rn(2) =
1

2
n(n− 1) · 4.

In this regard, the rapid decrease in asymptotic terms for large n makes intuitive sense. Indeed,

in high dimensions, a “great deal” of the natural potential is due to charges that reside “near

the origin.”

Also, applying the theta transform [6, Eqn. (2.3.2)] in (27) yields the analytically useful

Nn = − 1

4π

{
2

n− 2
−
∫ 1

0

ϑn4
(
e−π t

)
tn/2−2 dt+

∫ 1

0

(
t−n/2 − ϑn2

(
e−π t

))
dt

}
, (30)

where numerical care is needed near the origin in the second integrand. 3

In the next section we derive certain closed forms and exhibit others determined

experimentally—most of which we also indicate how to prove.

5. Closed forms for the φ2 potential

Provably we have the following results which were established by factorization of lattice sums

after being empirically discovered by the methods described in the next few sections.
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Theorem 3. We have

φ2(1/3, 1/3) =
1

8π
log(1 + 2/

√
3), (31)

φ2(1/4, 1/4) =
1

4π
log(1 +

√
2), (32)

φ2(1/3, 0) =
1

8π
log(3 + 2

√
3). (33)

Proof. Consider for s > 0

V2(x, y; s) :=
∞∑

m,n=−∞

cos[π(2m+ 1)x] cos[π(2n+ 1)y]

[(2m+ 1)2 + (2n+ 1)2]s
. (34)

This V2 function will be related by normalization, as V2(x, y; 1) = π2φ2(x, y). Treating it as

some general lattice sum [6, 7], we derive (with some difficulty; more details are in Appendix I)

V2(1/3, 1/3; s) = 2−1−s [−(1− 2−s)(1− 32−2s)L1(s)L−4(s)

+3(1 + 2−s)L−3(s)L12(s)
]
. (35)

The L’s in (35) are various Dirichlet series, L1 being the Riemann ζ function. Note that

(1− 32−2s) factors as (1 + 31−s)(1− 31−s) and lims→1(1− 31−s)L1(s) = log 3, and that

L−4(1) =
π

4
, L−3(1) =

√
3π

9
, L12(1) =

1√
3

log(2 +
√

3). (36)

After gathering everything together we have

φ2(1/3, 1/3) =
1

π2
V2(1/3, 1/3, 1) =

1

8π
log

(
3 + 2

√
3

3

)
,

which is (31).

More simply

V2(1/4, 1/4; s) = 2
∞∑

m,n=−∞

(−1)m+n

[(4m− 1)2 + (4n− 1)2]s
= 21−sL−8(s)L8(s) (37)

is a familiar lattice sum [6, 7]. So with

L−8(1) =
π

2
√

2
and L8(1) =

1√
2

log(1 +
√

2) (38)

we derive

φ2(1/4, 1/4) =
1

4π
log(1 +

√
2).

which is (32).
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Likewise

V2(1/3, 0; s) = 2−1−s [(1− 2−s)(1− 32−2s)L1(s)L−4(s)

+3(1 + 2−s)L−3(s)L12(s)
]

(39)

which yields

φ2(0, 1/3) =
1

16π
log
(

3(2 +
√

3)2
)

=
π

8
log(3 + 2

√
3),

which is (33).

Using the integer relation method PSLQ [5] to hunt for results of the form,

exp (πφ2(x, y))
?
= α, (40)

for α algebraic we may obtain and further simplify many results such as:

Conjecture 4. We have discovered and subsequently proven

φ2(1/4, 0)
?
=

1

4π
logα where

α + 1/α

2
=
√

2 + 1

φ2(1/5, 1/5)
?
=

1

8π
log

(
3 + 2

√
5 + 2

√
5 + 2

√
5

)
,

φ2(1/6, 1/6)
?
=

1

4π
log γ where

γ + 1/γ

2
=
√

3 + 1

φ2(1/3, 1/6)
?
=

1

4π
log τ where

τ − 1/τ

2
= (2
√

3− 3)1/4

φ2(1/8, 1/8)
?
=

1

4π
log

(
1 +

√
2−
√

2
4
√

2− 1

)

φ2(1/10, 1/10)
?
=

1

4π
log µ where

µ+ 1/µ

2
= 2 +

√
5 +

√
5 + 2

√
5

where the notation
?
= indicates that we originally only had experimental (extreme-precision

numerical) evidence of an equality.

Looking at (14) and (26), we can take the most valuable (in the sense of (x, y) being closest

to the origin (0, 0)) of the above φ2 evaluations, and attempt an approximation

N2 ≈ φ2(1/10, 1/10) +
1

2π
log
√

1/100 + 1/100 = −0.09818 . . . ,

which is off of the correct analytic N2 value −0.0982599931 . . . by about 1 part in 1000.
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Figure 1. High-precision plot of the Monge surface z = φ2(x, y), via fast series (23), showing

the logarithmic origin singularity (plot adapted from [9]). In this plot, x, y range over the 2-cube

[−1/2, 1/2]2; from symmetry one only need know the φ2 surface over an octant 1/2 > x ≥ y > 0,

say. We are able to establish closed forms for heights on this surface above certain rational

pairs (x, y). As just one example, φ2(1/4, 1/4) = 1
4π log(1 +

√
2) ≈ 0.0701.

Such hunts are made entirely practicable by (23). Note that for general x and y we have

φ2(y, x) = φ2(x, y) = −φ2(x, 1−y), so we can restrict searches to 1/2 > x ≥ y > 0, as illustrated

in Figure 1.

The following hints at how much underlying algebraic structure there is:

Example 5 (Denominator of five). We record that

φ2(1/5, 1/5)
?
= log(α)/π and φ2(2/5, 2/5)

?
= log(β)/π

where α > β are the positive roots of x32 − 12x24 − 26x16 + 52x8 + 1. Similarly,

φ2(1/5, 0/5)
?
= log(α)/π and φ2(2/5, 0/5)

?
= log(β)/π

share the positive roots of x32 − 52x24 − 26x16 + 12x8 + 1. Moreover,

φ2(1/5, 2/5)
?
=

1

16π
log 5, (41)

which is stunningly simple. Explicitly,∑
0<m,n odd

cos(mπ/5) cos(2nπ/5)

n2 +m2

?
=

π log 5

64
. (42)

This will be explained in Example 15. 3
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Example 6 (Denominator of six and more). Likewise,

φ2(1/6, 0)
?
= log(α)/π

for α the largest root of

x16 − 4x14 + 4x12 − 4x10 − 2x8 − 4x6 + 4x4 − 4x2 + 1.

Similarly,

φ2(1/8, 0)
?
= log(β)/π and φ2(1/10, 0)

?
= log(γ)/π

for β, γ the largest roots respectively of

x32 + 8
(√

2 + 1
)
x28 − 12x24 − 8

(√
2 + 1

)
x20 − 38x16 − 8

(√
2 + 1

)
x12

− 12x8 + 8
(√

2 + 1
)
x4 − 1

(the integer polynomial is of degree 64) and

x8 −
(√

5 + 1
)
x6 −

(
53/4 + 3 51/4 +

√
5 + 1

)
x4 −

(√
5 + 1

)
x2 + 1

(the integer polynomial is now degree 32). In each case the polynomial is palindromic. Again,

the polynomial found for x1/4 is simpler. For 1/6 it is x8 − 8x7 − 20x6 − 56x5 − 26x4 − 56x3 −
20x2 − 8x+ 1.

Likewise,

φ2(1/3, 1/4)
?
= log(σ)/4π

for σ the largest root of

x8 + 4x7 − 4x6
√

3− 4x5 +
(

14− 8
√

3
)
x4 − 4x3 − 4x2

√
3 + 4 x+ 1.

We have also discovered that for k = 1, 2, 3 we have

φ2(k/7, k/7)
?
=

1

8π
log(αk)

where α1 > α2 > α3 are the positive roots of

7x6 −
(

154 + 56
√

7
)
x5 −

(
1603 + 616

√
7
)
x4 +

(
9156 + 3472

√
7
)
x3

−
(

4431 + 1680
√

7
)
x2 −

(
4298 + 1624

√
7
)
x− 8

√
7− 21.

Also,

φ2(2/7, 1/7)
?
=

1

16π
log(β1), φ2(3/7, 2/7)

?
=

1

16π
log(β2),

and φ2(3/7, 1/7)
?
=

1

16π
log(β3),
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where β1 > β2 > β3 are the positive roots of

x6 − 14x5 − 3801x4 + 9436x3 − 1281x2 − 238x− 7,

all of whose roots are real. Finally

φ2(1/7, 0)
?
=

1

8π
log(γ1), φ2(3/7, 0)

?
=

1

8π
log(γ2)

and φ2(5/7, 0)
?
=

1

8π
log(γ3),

where γ1 > γ2 > γ3 are the positive roots of

x6 −
(

98 + 40
√

7
)
x5 +

(
24
√

7 + 147
)
x4 +

(
308 + 48

√
7
)
x3 −

(
16
√

7− 119
)
x2

+
(

14− 8
√

7
)
x− 8

√
7 + 21.

Similar observations appeared to work for denominators of 3 ≤ n ≤ 15. For instance, the

quantity exp (4π φ2(1/13, 3/13)) was found to be of degree 36 over Q
(√

3
)
. 3

Remark 7 (Algebraicity). In light of our current evidence we conjecture that for x, y rational,

φ2(x, y)
?
=

logα

π
(43)

for α algebraic. Theorem 10 will prove this conjecture. 3

Remark 8. The proven results of Theorem 3 rely on the special structure of the series (35),

(37) and (39). But conjecturally, as we have seen and will see below, much more is true and

does not apparently rely on the complete factorizations [20] of (34) used above.

We might try to work backwards and find the expressions they came from for general

s. However, φ2(1/4, 0; s) in particular cannot be expressed in terms of Dirichlet series with

real characters. This then is a candidate for the use of complex character Dirichlet series [7].

Moreover, (41) suggests another approach might be more fruitful. This is indeed so as Theorem

9 and its sequela show. 3

We note that Theorem 10 proves that all values should be algebraic but does not, a priori,

establish the precise values we have found. This will be addressed in §6.2.

6. Madelung and “jellium” crystals and Jacobi ϑ-functions

We have studied

φ2(x, y) :=
1

π2

∑
a,b∈O

cos(πax) cos(πby)

a2 + b2
, (44)
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as a ‘natural” potential for n = 2 dimensions in the Madelung problem. Here E denotes the

even integers. There is another interesting series, namely

ψ2(x, y) :=
1

4π2

′∑
a,b∈Z

cos(2πax) cos(2πby)

a2 + b2

=
1

π2

∑
a,b∈E

cos(πax) cos(πby)

a2 + b2
, (45)

where E denotes the even integers.

Now it is explained, and pictorialized in [9] that this ψ2 function is the ‘natural” potential

for a classical jellium crystal and relates to Wigner sums [7]. This involves a positive charge at

every integer lattice point, in a bath—a jelly–of uniform negative charge density. As such, the

ψ functions satisfy a Poisson equation but with different source term [9].

Note importantly that ψ2 satisfies Neumann boundary conditions on the faces of the Delord

cube—in contrast with the Dirichlet conditions in the Madelung case.

Briefly, a fast series for ψn has been worked out [9] as:

ψn(r) =
1

12
+

1

2
r2

1 −
1

2
|r1|+

2n−3

π

∑
S∈Z+(n−1)

cosh(πS(1− 2|r1|)
∏n−1

k=1 cos(2πSkrk+1)

S sinh(πS)
,

(46)

valid on the Delord n-cube, i.e. for r ∈ [−1/2, 1/2]n.

6.1. Closed forms for ψ2 and φ2

Using the series (46) for high-precision numerics, it was discovered (see [9, Appendix]) that

previous lattice-sum literature has harbored a longtime typographical issue for certain 2-

dimensional sums, and that a valid closed form for ψ2 is actually

ψ2(x, y) =
x2

2
+

1

4π
log

(
Γ(1/4)√
8π Γ(3/4)

)
− 1

2π
log
∣∣ϑ1

(
π(ix+ y), e−π

)∣∣ . (47)

As for the Madelung scenario, it then became possible to cast φ2 likewise in closed form,

namely

φ2(x, y) =
1

4π
log |α(z)| where α(z) :=

ϑ2
2(z, q)ϑ2

4(z, q)

ϑ2
1(z, q)ϑ2

3(z, q)
(48)

for q := e−π, z := π
2
(y + ix). (See [9] and Appendix II for details.)

Now we observe that, using classical results [6, §2.6 Exercises 2 and 4] on theta functions

(also described in [16]), we may also write
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Theorem 9. For z := π
2
(y + ix)

φ2(x, y) =
1

2π
log

∣∣∣∣ϑ2(z, q)ϑ4(z, q)

ϑ1(z, q)ϑ3(z, q)

∣∣∣∣ =
1

4π
log

∣∣∣∣∣ 1− λ(z)√
2

1− 1/λ(z)√
2

∣∣∣∣∣ , (49)

and

ψ2(x, y) = − 1

4π
log
∣∣∣2µ(2z)

(√
2λ(2z)− 1

)∣∣∣ , (50)

where

λ(z) :=
ϑ2

4(z, e−π)

ϑ2
3(z, e−π)

=
∞∏
n=1

(1− 2 cos(2z)q2n−1 + q4n−2)2

(1 + 2 cos(2z)q2n−1 + q4n−2)2
, (51)

and

µ(z) := e−πx
2/2 ϑ

2
3(z, e−π)

ϑ2
3 (0, e−π)

= qx
2/2

∞∏
n=1

(1 + 2 cos(2z)q2n−1 + q4n−2)2

(1 + q2n−1)4
(52)

with q := e−π.

We recall the general ϑ-transform giving for all z with Re t > 0

ϑ3−k(πz, e
−tπ) =

√
1/t e−πz

2/t ϑ3+k(iπz/t, e
−π/t) (53)

for k = −1, 0, 1 (while ϑ1(πz, e−tπ) =
√
−1/t e−πz

2/t ϑ1(iπz/t, e−π/t)). In particular with t = 1

we derive that

ϑ3−k(π(ix+ y), e−π) = e−πz
2

ϑ3+k(π(iy − x), e−π), (54)

which directly relates |µ(π(y + ix))| and |µ(π(x+ iy))| in (52). Let

κ(z) :=
ϑ2

2(z, e−π)

ϑ2
3(z, e−π)

. (55)

Then

κ(ix+ y) + λ(ix+ y) =
√

2 (56)

or 1−
√

2κ(ix+ y) =
√

2λ(ix+ y)− 1, and (53) then shows

λ(ix+ y) = κ(−x+ iy) =
√

2− λ(−x+ iy). (57)

Likewise (49) is unchanged on replacing λ by κ.

Hence, it is equivalent to (43) to prove that for all z = π
2
(y+ ix) with x, y rational λ(z) in

(51) is algebraic. Note also the natural occurrence of the factor of 4π in the rightmost term of

(49).

Theorem 10 (Algebraic values of λ and µ). For all z = π
2
(y+ ix) with x, y rational the values

of λ(z) and µ(2z) in (51) are algebraic. It follows that φ2(x, y) = 1
4π

logα with α algebraic.

Similarly ψ2(x, y) = 1
4π

log β for β algebraic.
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Proof. (As suggested by Wadim Zudilin)

For λ, fix an integer m > 1. The addition formulas for the ϑ’s as given in [6, §2.6]

ϑ3(z + w, q)ϑ3(z − w, q)ϑ2
3(0, q) = ϑ2

3(z, q)ϑ2
3(w, q) + ϑ2

1(z, q)ϑ2
1(w, q) (58)

ϑ4(z + w, q)ϑ4(z − w, q)ϑ2
4(0, q) = ϑ2

4(z, q)ϑ2
4(w, q)− ϑ2

1(z, q)ϑ2
1(w, q) (59)

ϑ1(z + w, q)ϑ1(z − w, q)ϑ2(0, q)ϑ3(0, q) = ϑ1(z, q)ϑ4(z, q)ϑ2(w, q)ϑ3(w, q)

+ ϑ1(w, q)ϑ4(w, q)ϑ2(z, q)ϑ3(z, q) (60)

along with (56) allow one to write λ(mz) algebraically in terms of λ(z) in the same way that

Weierstrass ℘(mz) is in terms of of ℘(z). (We give the details below for µ.) We thus have an

algebraic equation

Ωm(λ(z), λ(mz)) = 0. (61)

for all z. Take m to be the denominator of x, y. Then mz is in (π/2) (Z + Zi) and the

double periodicity of λ—periods of λ are π and πi—allows us to conclude that λ(mz) ∈
{0, λ(0), 1/λ(0),∞}, and these are algebraic numbers. In conjunction with (61) we are done.

For µ. For u, v ∈ Z we have [6, §2.6] that ϑ3(z + πu+ πi) = q−1e−2izϑ3(z), hence

ϑ3(z + πu+ πiv) = q−v
2

e−2vizϑ3(z) = eπv
2−2vizϑ3(z). (62)

We now assume that z = π(y+ix) ∈ π(Q+iQ), so that any quotient ϑj(z)/ϑk(z) is an algebraic

number. For any such z we set

f(z) = e−πx
2 ϑ3(z)

ϑ3(0)
.

Now (58) can be re-written as

f(z1 − z2)f(z1 + z2)

f(z1)2f(z2)2
= 1 +

(ϑ1(z1)

ϑ3(z1)

)2(ϑ1(z2)

ϑ3(z2)

)2

, (63)

the right-hand side being algebraic. Since f(0) = 1, application of (63) with z1 = z2 = z implies

that f(z) is algebraic over K2 := Q(f(2z)); then inductive use (63) with z1 = (m − 1)z and

z2 = z shows f(z) is algebraic over Km := Q(f(mz)) for any m.

Now choose m such that mz = π(Y + iX) ∈ π(Z + iZ). By (62) for z = 0, u = Y and

v = X(= mx),

ϑ3(mz) = eπX
2

ϑ3(0) = eπ(mx)2ϑ3(0);

in other words, f(mz) = 1. But then Km = Q and by the above f(z) is algebraic. Finally

f(2z)2 = µ(2z).

This will also work for any singular value: τ =
√
−d and q = exp(2πiτ) and so may apply

to sums with n2 + dm2 in the denominator, as we see in the next section.
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6.2. Explicit equations for degree 2, 3, 5

We illustrate the complexity of Ωm by first considering m = 2, 3.

Example 11 (λ(2z) and λ(3z)). We also have various other consequences of Liouville’s principle

such as the following which were used in Theorem 9:

ϑ2
3(z, e−π) =

√
2ϑ2

4(z, e−π)− ϑ2
1(z, e−π) (64)

ϑ2
2(z, e−π) = ϑ2

4(z, e−π)−
√

2ϑ2
1(z, e−π). (65)

Setting z = w in (58) and (59) on division we have

λ(2z)1/2 = 23/4ϑ
4
4(z, e−π)− ϑ4

1(z, e−π)

ϑ4
3(z, e−π) + ϑ4

1(z, e−π)
, (66)

and so letting τ(z) = ϑ2
1(z, e−π)/ϑ2

3(z, e−π) we obtain Ω2 in the form

τ(z) =
√

2λ(z)− 1 (67)

λ(2z) = 23/2

(
λ2(z)− τ 2(z)

1 + τ 2(z)

)2

, (68)

where we have used (64). Iteration yields Ω2n . We may write (66) as

Ω2(x, y) = 2
(
x4 + 1

)2
y2 + 8

(
x7 − x5 − x3 + x

)
y − x8 + 12x6 − 38x4 + 12x2 − 1,

(69)

for x = λ(z), y = λ(2z). The inverse iteration is

x =
23/4 +

√
y −

√√
2− y

4
√

2 +
√

2
√
y

. (70)

From this one may recursively compute λ(z/2n) from λ(z) and watch the tower of radicals

grow.

Correspondingly, we may use 2z ± z in (58) and (59) to obtain

λ(3z) = 2
(λ (2 z)λ (z)− τ (2 z) τ (z))2

(1 + τ (2 z) τ (z))2 λ (z)
, (71)

where τ(z), τ(2z), λ(2z) are given by (67) and (68). After simplification we obtain

λ (3 z) = λ (z)

(
λ4 (z)− 6λ2 (z) + 6

√
2λ (z)− 3

3λ4 (z)− 6
√

2λ3 (z) + 6λ2 (z)− 1

)2

. (72)

We can then determine that

Ω3(x, y) =
(
81x16 − 648x14 + 1836x12 − 2376x10 + 1782x8 − 792x6 + 204x4

−24x2 + 1
)
y2 +

(
−18x17 + 264x13 − 768x11 + 916x9 − 768x7

+264x5 − 18x
)
y + x18 − 24x16 + 204x14 − 792x12 + 1782x10

− 2376x8 + 1836x6 − 648x4 + 81x2.
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In addition, since we have an algebraic relation α = 1−λ/
√

2

1−1/λ/
√

2
this allows us computationally

to prove the evaluation of φ2(x/2, y/2) and φ2(x/3, y/3) once φ2(x, y) is determined as it is for

the cases of Theorem 3. 3

We may perform the same work inductively for d = 2n + 1 using (n + 1)z ± nz to obtain

Ω5 and so on. The inductive step is

λ((2n+ 1) z) =
2

λ (z)

(
λ ((n+ 1) z)λ (n z)− τ ((n+ 1) z) τ (n z)

1 + τ ((n+ 1) z) τ (n z)

)2

. (73)

In Example 17 we give the explicit formula for λ(5z) as a rational function in λ(z).

Alternatively, integer relation methods can be used to empirically determine Ωd for reasonably

small degree d.

Example 12 (Empirical computation of Ωd). Given z and x = λ(z), y = λ(dz), we compute

xj yk for 0 ≤ j ≤ J, 0 ≤ k ≤ K up to degree J,K and look for a relation to precision D. This

is a potential candidate for Ωd. If Ωd(λ(w), λ(dw)) ≈ 0 at a precision significantly greater than

D and for various choices of w, we can reliably determine Ωd this way. For d = 2, it is very

easy to recover (69) in this fashion. For 3 ≤ d ≤ 5 we had a little more difficulty. We show the

equation for λ(5z) in (77) and λ(7z) in (94). 3

Example 13 (Products). Let Λ(y) := λ((y + i · 0)π/2). Then inspection of infinite-product

forms for ϑ ratios yields the following λ-product identity. For any positive odd integer d,

Λ

(
2

d

)
· Λ
(

4

d

)
· · ·Λ

(
d− 1

d

)
=

ϑ3(0, e−π)ϑ4(0, e−dπ)

ϑ4(0, e−π)ϑ3(0, e−dπ)
= 21/4

√
k′d2 , (74)

where k′ =
√

1− k2 and kd2 is the d2-singular value—itself an algebraic number that can be

given closed forms [6, 7]. This shows the intricate manner in which natural-potential value sets

such as {φ2(0, 2/7), φ2(0, 4/7), φ2(0, 6/7)} are interrelated. For example

k2
25 =

(
√

5− 2)2(3− 2 · 5 1
4 )2

2
.

Correspondingly

2k49k
′
49 =

(
71/4 −

√
4 +
√

7

2

)12

.

More subtle variations on this kind of computation are possible. 3

Remark 14 (Incomplete Landen transformation). Moreover, we have access to Landen’s

transformation [6, Thm. 2.5] namely

ϑ4(2z, e−2π)

ϑ4(0, e−2π)
=
ϑ4(z, e−π)ϑ3(z, e−π)

ϑ4(0, e−π)ϑ3(0, e−π)
,

for all z.
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Example 15. We conclude this subsection by proving the empirical evaluation of (41), namely

φ2(1/5, 2/5)
?
=

1

4π
log 51/4. (75)

Let w = π
10

(1 + 2i) so that

φ2(2/5, 1/5) =
log |α(w)|

4π
while− φ2(2/5, 1/5) =

log |α(2w)|
4π

since φ2(2/5, 4/5) = −φ2(2/5, 1/5). We may—with help from a computer algebra system—solve

for the stronger requirement that α(2w) = −α(w) using Example 11. We obtain

α(2w) =

√
2i− 1

5

so that |α(2w)| = 5−1/4 and |α(w)| = 51/4, as required. To convert this into a proof we can

make an a priori estimate of the degree and length of α(w)—using (68), (72) and (73) while

λ(5w) = 1—and then perform a high precision computation to show no other algebraic number

could approximate the answer well enough. The underlying result we appeal to [6, Exercise 8,

p. 356] is given next in Theorem 16.

In this particular case, we use P (α) = α4 + 2α2 + 5 with ` = 8, d = 4 and need to

confirm that |P (α)| < 5D/4L−38−D. A very generous estimate of L < 1012 and D < 103

shows it is enough to check |P (α(w)| ≤ 10−765. This is very easy to confirm. Relaxing to

L < 10100, D < 104 requires verifying |P (α(w)| ≤ 10−7584. This takes only a little longer. 3

Recall that the length of a polynomial is the sum of the absolute value of the coefficients.

Theorem 16 (Determining a zero). Suppose P is an integral polynomial of degree D and length

L. Suppose that α is algebraic of degree d and length `. Then either P (α) = 0 or

|P (α)| ≥ max{1, |α|}D

Ld−1`D
.

Example 17 (λ(5z)). Making explicit the recipe for λ(5z) we eventually arrive at:

λ (5z) = λ (z)

(
λ4 (z)− 4

√
2λ3 (z) + 14λ2 (z)− 10

√
2λ (z) + 5

)2(
5λ4 (z)− 10

√
2λ3 (z) + 14λ2 (z)− 4

√
2λ (z) + 1

)2 (76)

×
(
λ8 (z) + 4

√
2λ7 (z)− 32λ6 (z) + 36

√
2λ5 (z)− 34λ4 (z) + 4

√
2λ3 (z) + 8λ2 (z)− 4

√
2λ (z) + 1

)2(
λ8 (z)− 4

√
2λ7 (z) + 8λ6 (z) + 4

√
2λ5 (z)− 34λ4 (z) + 36

√
2λ3 (z)− 32λ2 (z) + 4

√
2λ (z) + 1

)2 .
This shows how generous our estimates were in Example 15. Equation (76) may be written as

λ(5z) = λ(z)
Q5(λ(z))

Q̂5(λ(z))
(77)
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for an integer polynomial of degree 64 Here Q̂5 reverses the coefficients of Q5 and so is a

renormalized reciprocal polynomial. For n = 3 in (71) this is also the case with Q3 of degree

16. The case of n = 2 is slightly different.
The corresponding Ω5 polynomial for degree 5 is:

Ω5(x, y) = − 625x2 + 23000x4 − 336900x6 + 2602520x8 − 12245586x10 + 40127080x12

− 108682580x14 + 276123880x16 − 635900495x18 + 1237910128x20

− 2092012680x22 + 3279149040x24 − 4660484540x26 + 5424867280x28

− 4748415048x30 + 2986413520x32 − 1322491935x34 + 411477560x36

− 92161140x38 + 15610488x40 − 1998610x42 + 174920x44 − 11620x46

+ 200x48 − x50 + 50xy + 1280x3y − 20888x5y − 148480x7y + 4242660x9y

− 28815360x11y + 95275720x13y − 151372544x15y − 76498770x17y

+ 1124451840x19y − 3330728240x21y + 5935590400x23y − 7143431048x25y

+ 5935590400x27y − 3330728240x29y + 1124451840x31y − 76498770x33y

− 151372544x35y + 95275720x37y − 28815360x39y + 4242660x41y

− 148480x43y − 20888x45y + 1280x47y + 50x49y − y2 + 200x2y2 − 11620x4y2

+ 174920x6y2 − 1998610x8y2 + 15610488x10y2 − 92161140x12y2

+ 411477560x14y2 − 1322491935x16y2 + 2986413520x18y2 − 4748415048x20y2

+ 5424867280x22y2 − 4660484540x24y2 + 3279149040x26y2 − 2092012680x28y2

− 108682580x36y2 + 40127080x38y2 − 12245586x40y2 + 2602520x42y2

+ 1237910128x30y2 − 635900495x32y2 + 276123880x34y2 − 336900x44y2

+ 23000x46y2 − 625x48y2. (78)

3

In similar fashion we can now computationally confirm all of the other exact evaluations in

Conjecture 4 and Example 6. For example, we know that |α(π(1/3 + i/3))| = |1/α(π/2(2/3 +

2i/3))|. This solves to produce −α(π/2(1/3 + i/3))2 = 1 + 2/3
√

3 and establishes (31) of

Theorem 3. Now Example 11 can be used to produce α(π/2(1/6+i/6)) is as given in Conjecture

4. This also applies to ψ2(1/8, 1/8) of the next subsection and so on.

6.3. Evaluation of ψ2(x, y)

We observe also that the classical lattice evaluation
′∑

m,n∈Z

(−1)m+n

m2 + n2
= −π log(2),

see [6, Eqn. (9.2.4)] shows that ψ2(1/2, 1/2) = − log 2
4π
, and similarly ψ2(1/2, 0) = ψ2(0, 1/2) =

− log 2
8π
.
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Example 18 (Some empirical evaluations). We obtain experimentally that

ψ2(1/3, 1/3)
?
=

log
(

2
√

3−3
3

)
3 · 8π

, ψ2(1/4, 1/4)
?
= − log 2

4 · 4π
,

while

ψ2(1/5, 1/5)
?
=

log
(
−709

2
+ 319

2

√
5 + 3

√
28090− 12562

√
5
)

5 · 8π
,

and

ψ2(1/6, 1/6)
?
=

log
(
2 +
√

3
)

6 · 2π
.

So we are off to the races again.

By techniques like those of Appendix I we can establish a subset of such results:

ψ2(1/4, 1/4) = − log 2

4 · 4π
, ψ2(1/4, 0) =

log 4+3
√

2
2

4 · 4 π
,

and

ψ2(1/6, 1/6, 1) =
log(2 +

√
3)

2 · 6 π
,

via explicit lattice sum factorization. But the other cases, perhaps unsurprisingly in light of

(50), seem more recondite than for φ2. Details are given in Appendix III. 3

6.4. “Compressed” potentials

Yet another solution to the Poisson equation with crystal charge source, for d > 0, is

φ2(x, y, d) :=
1

π2

∑
m,n∈O2

cos(πmx) cos(πn
√
d y)

m2 + dn2
. (79)

This is the potential inside a crystal compressed by 1/
√
d on the y-axis, in the sense that

the Delord-cube now becomes the cuboid {x, y} ∈ [−1/2, 1/2]× [−1/(2
√
d), 1/(2

√
d)]. Indeed,

φ2(x, y, d) vanishes on the faces of this 2-cuboid (rectangle) for d > 0 and integer.

Along the same lines as involve the analysis of (22), we can posit a fast series

φ2(x, y, d) =
1

π
√
d

∑
R∈O+

sinh(πR
√
d (1/2− |x|) cos(πR

√
d y)

R cosh(πR
√
d/2)

, (80)

valid on the Delord cuboid, i.e. x ∈ [−1/2, 1/2], y ∈ [−1/(2
√
d), 1/(2

√
d)].

Moreover, the log-accumulation technique of [9, Appendix]) (see also our Appendix II)

may be used as with Theorem 9 to obtain:
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Theorem 19 (ϑ-representation for compressed potential). For the compressed potential we

have

φ2(x, y, d) =
1

2
√
d π

log

∣∣∣∣ϑ2(z, q)ϑ4(z, q)

ϑ1(z, q)ϑ3(z, q)

∣∣∣∣ , (81)

where q := exp(−π
√
d) and z := 1

2
π
√
d(y + ix).

Note that this theorem is consistent with d = 1, in the sense φ2(x, y, 1) = φ2(x, y). In

addition, for integers a, b ≥ 1 we have:

a2 φ2

(
ax, ay,

b2

a2

)
:=

1

π2

∑
m∈aO,n∈bO

cos(πmx) cos(πny)

m2 + n2
. (82)

Moreover, for each positive rational d there is an analogue of Theorem 10 in which 1/
√

2

is replaced by the d-th singular value kd [6, 7]. Thus k2 =
√

2 − 1, k3 = (
√

3 − 1)/
√

2, and

k4 = (
√

2− 1)2. Precisely, we set

λd(z) :=
ϑ2

4(z, exp(−π
√
d))

ϑ2
3(z, exp(−π

√
d))

κd(z) :=
ϑ2

2(z, exp(−π
√
d))

ϑ2
3(z, exp(−π

√
d))

τd(z) :=
ϑ2

1(z, exp(−π
√
d))

ϑ2
3(z, exp(−π

√
d))

(83)

and we have

k′d λd(z) + kd κd(z) = 1,

(see [6, Prop. 2.1]), while

kd λd(z)− k′d κd(z) = τd(z).

Thus,

φ2(x, y, d) =
1

4
√
d π

log

∣∣∣∣ 1− k′dλd(z)

1− k′d/λd(z)

∣∣∣∣ , (84)

and we may now study λd exclusively. We specify the details in a separate paper [2]. For now

we record only the the equation for λd(2z).

Example 20 (λd(2z)). As for λ(2z), which is the case d = 1, we have

τd(z) =
λd(z)− k′d

kd
(85)

λd(2z) = k′
−3
d

(
λ2
d(z)− τ 2

d (z)

1 + τ 2
d (z)

)2

. (86)

This becomes

λd(2z) = k′d

(
1 + λ2

d(z)− 2λd(z)/k′d
1 + λ2

d(z)− 2λd(z) · k′d

)2

, (87)

and λd(0) = k′d. 3
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We record: φ2(x, 1/4, 4) = 0 for all x and have several sample evaluations:

φ2(1/3,
√

2/3, 2)
?
=

−1

8
√

2 π
log
(

9− 6
√

2
)

(88)

φ2(1/3,
√

3/3, 3)
?
=

−1

8
√

3 π
log 3 (89)

φ2(1/3, 1/3, 4)
?
=

1

16π
log

(√
3
(

2 +
√

3
)(√

2−
√

3
)2
)

(90)

φ2(1/4, 1/4, 9)
?
=

1

48π
log

(
1

4

(
3 + 5

√
3− 4

√
2
)(√

3− 1
)3 (

1 +
√

2
)2

·
(√

3−
√

2
)2
)
. (91)

In general we anticipate similarly algebraic evaluations for φ2(a/c,
√
kb/c, k) for nonnegative

integer values of a, b, c, k

7. Computation techniques and results

7.1. Discovery of minimal polynomials for algebraic numbers in φ2(x, y) and ψ2(x, y)

The experimental evaluations of φ2(x, y) and ψ2(x, y) presented in the previous two sections,

along with numerous others summarized in Table 1, 2 and 3 below, were, in most cases, obtained

by the following computational procedure:

(i) Given a positive integer d, select a conjectured polynomial degree m and a precision level

P . For φ2(x, y), we typically set the numeric precision level P somewhat greater than

0.5m2 digits (see Tables 1 and 2), while for ψ2(x, y), we set P somewhat greater than 3m2

(see Table 3).

(ii) Given the rationals x = j/d and y = k/d, compute φ2(x, y) to P -digit precision using

formula (23), terminating the infinite series when the terms are consistently less than the

“epsilon” of the arithmetic being used. The functions cosh and sin can be evaluated using

well-known well-known schemes based on argument reductions and infinite series [5, pg.

218–235]. Alternatively (which is faster), compute φ2(x, y) via formula (49). Evaluate the

four theta functions indicated using the very rapidly convergent formulas given in [6, pg.

52] or [15]. Similarly, compute ψ2(x, y) using formulas (50), (51) and (52).

(iii) Generate the (m + 1)-long vector (1, α, α2, · · · , αm), where either α = exp(8πφ2(x, y)) or

α = exp(8πψ2(x, y)) as appropriate. Note: we have found that without the eight here, the

degree of the resulting polynomial would be eight times as high (but the larger polynomials

were in fourth or eighth powers). Given the very rapidly escalating computational cost of
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higher degrees, many of the results listed in Tables 1 and 2 would not be feasible without

this factor.

(iv) Apply the PSLQ algorithm (we actually employed the two-level multipair variant of PSLQ

[3]) to find a nontrivial (m + 1)-long integer vector A = (a0, a1, a2, · · · , am) such that

a0 + a1α + a2α
2 + · · · + amα

m = 0, if such a vector exists. PSLQ (or one of its variants)

either finds a vector A, which then is the vector of coefficients of an integer polynomial

satisfied by α (certified to the “epsilon” of the numerical precision used), or else exhausts

precision without finding a relation, in which case the algorithm nonetheless provides a

lower bound on the Euclidean norm of the coefficients of any possible degree-m integer

polynomial A satisfied by α.

(v) If no relation is found, try again with a larger value of m and correspondingly higher

precision. If a relation is found, try with somewhat lower m, until the minimal m is found

that produces a numerically significant relation vector A. Here “numerically significant”

means that the relation holds to at least 100 digits beyond the level of precision required

to discover it. To obtain greater assurance that the polynomial produced by this process

is in fact the minimal polynomial for α, use the polynomial factorization facilities in

Mathematica or Maple to attempt to factor the resulting polynomial.

Our computations required up to 20,000-digit precision, and, for large degrees and

correspondingly high precision levels, were rather expensive (over 100 processor-hours in some

cases). We employed the ARPREC arbitrary precision software [4].

Table 1 below shows results for in our results to find the minimal polynomial for

exp(8πφ2(1/d, 1/d)) for various positive integers d. In this table, runs noted with an asterisk

were obtained by Andrew Mattingly. Table 2 shows similar data for exp(8πφ2(1/d, q/d)), where

in each case q ≥ 2 is chosen to be the smallest integer coprime with d. Table 3 shows similar

data for exp(8πψ2(1/d, 1/d).

The number of zeroes z(d) among the minimal polynomial coefficients, the numeric

precision level P , the run time in seconds T , and the approximate base-10 logarithm M of

the absolute value of the central coefficient, are also shown in the tables, together with the

ratio (log10M)/m(d). Note that this ratio tends to be highly consistent within each table, at

least for successful runs. The notation “Failed” means that we were unable to find a polynomial

for the specific case, in which case the entry in the column log10M is the base-10 logarithm of

the norm bound produced by the PSLQ program for that run (shown in bold), and the last

column gives this value divided by m(d).

As Jason Kimberley has observed empirically, in Table 1 the degree of the polynomial m(d)

appears to be given for odd primes by m(4k+1) = (2k) ·(2k) and m(4k+3) = (2k+2) ·(2k+1).

If we set m(2) = 1/2, for notational convenience, then it seems that for any prime factorization
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of an integer greater than 2:

m

(
k∏
i=1

peii

)
?
= 4k−1

k∏
i=1

p
2(ei−1)
i m(pi). (92)

This sequence now appears as http://oeis.org/A218147 in the Online Encyclopedia of Integer

Sequences.

With regards to the run times listed (given to 0.01 second accuracy), it should be recognized

that like all computer run times, particularly in a multicore or multiprocessor environment, they

are only repeatable to two or three significant digits. They are listed here only to emphasize

the extremely rapid increase in computational cost as the degree m and corresponding precision

level P increase.

Remark 21. With regards to the results in Tables 1, 2 and 3, we observe the following:

(i) We observe that with a few exceptions (as noted in Examples 5 and 6) the minimal

polynomial for exp(8πφ2(1/d, q/d)), where q is the smallest integer coprime with d,

as given in Table 2, appears to have the same degree as the minimal polynomial for

exp(8πφ2(1/d, 1/d)), as given in Table 1. We have confirmed this in Table 2 and noted

that the polynomials are typically dense. In Table 2, we mark in italics those which have

a lower degree than the corresponding entry in Table 1.

(ii) Although the degree of the minimal polynomial for exp(8πψ2(1/d, 1/d)) (from Table 3)

is, in most cases, the same as the corresponding degree for exp(8πφ2(1/d, 1/d)) (from

Table 1), the coefficients of the polynomials in Table 3 are much larger. For example,

in the case d = 17, the central coefficient of the degree-64 minimal polynomial for

exp(8πψ2(1/17, 1/17)) is approximately 2.936 × 10218, as compared with approximately

1.736× 1028 for exp(8πφ2(1/17, 1/17)).

(iii) We also observe that for each d, exp(8πφ2(k/d, k/d)) appears to satisfy the same minimal

polynomial as exp(8πφ2(1/d, 1/d)), whenever (k, d) = 1. We have confirmed this in every

successful case listed in Table 1, namely for all integers up to 32 except 27, 29 and 31.

(iv) Similarly, the constants exp(8πφ2(j/d, k/d)) appear to share the same minimal polynomial

(or the alternating sign equivalent) for all 0 < j < k ≤ d/2 and k with (j, d) = (k, d) =

(j, k) = 1. We have checked this for all successful cases in Table 1.

(v) A sample of the extraordinarily large polynomials that we obtained is shown in Table 4.

(vi) In all cases we checked the polynomials split once over an appropriate quadratic extension

field.

(vii) In Table 1, note that in each of the three cases for which we failed to find a relation, the

base-10 logarithm of the norm bound divided by m(d) is significantly larger than the values

for (log10M)/m(q) for the successful cases. This suggests that the minimal polynomials
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d m(d) z(d) P T log10M
log10M

m(d)
3 2 0 400

4 2 0 400

5 4 0 400 0.40 1.4150 0.3537

6 4 0 400 0.39 0.7782 0.1945

7 12 0 400 0.71 5.0489 0.4207

8 8 0 400 0.43 3.2989 0.4124

9 18 0 400 1.81 7.6477 0.4249

10 8 0 400 0.54 2.6571 0.3321

11 30 0 1000 28.50 12.9873 0.4329

12 16 0 400 1.22 6.7880 0.4243

13 36 0 1000 44.04 15.6385 0.4344

14 24 0 1000 12.37 9.7245 0.4052

15 32 0 1000 34.58 12.8370 0.4012

16 32 0 1000 29.62 13.8452 0.4327

17 64 0 4000 3387.71 28.2396 0.4412

18 36 0 2000 274.60 13.8718 0.3853

19 90 0 6000 19559.37 39.8456 0.4427

20 32 0 2000 222.87 13.9705 0.4366

21 96 0 6000 25210.51 42.4696 0.4424

22 60 0 3000 1748.19 25.8002 0.4300

23 132 0 12000 212634.54 58.7280 0.4449

24 64 0 3000 2224.42 28.1624 0.4400

25 100 0 8000 58723.90 44.0690 0.4407

26 72 0 4000 4961.57 30.9611 0.4300

27∗ 162 19500 128074.00 72.1946 0.4456

28 96 0 8000 46795.52 42.5098 0.4428

29∗ 196 19500 145388.00 87.4974 0.4464

30 64 0 3000 2208.95 27.2294 0.4255

31 144 12000 Failed 79.4119 0.5515

32 128 0 10000 163662.83 56.8932 0.4445

Table 1. PSLQ runs to recover minimal polynomials satisfied by exp(8πφ2(1/d, 1/d)). Here

m(d) is the degree, z(d) is the number of zero coefficients, P is the precision level in digits,

T is the run time in seconds, and log10M is the size in digits of the central coefficient. In

cases where we failed to find a minimal polynomial, the next-to-last column gives the base-10

logarithm of the norm bound produced by PSLQ (shown in bold), and the last column gives

this value divided by m(d).
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d q m(d, q) z(d, q) P T log10M
log10M

m(d, q)
3 2 2 1 400

4 3 2 0 400

5 2 2 1 400 0.05

6 5 4 0 400 0.48 0.7782 0.1945

7 2 12 6 400 0.61 3.9748 0.3312

8 3 4 0 400 0.57 1.4150 0.3537

9 2 18 0 400 2.15 4.9247 0.2736

10 3 4 0 400 0.79 0.3010 0.0753

11 2 30 0 1000 35.46 8.9251 0.2975

12 5 8 0 1000 14.79 2.7649 0.3456

13 2 36 0 1000 57.66 11.7334 0.3259

14 3 24 0 1000 23.15 7.1480 0.2978

15 2 32 0 1000 44.09 9.9373 0.3105

16 3 32 0 1000 34.17 10.5043 0.3283

17 2 64 0 3000 2937.12 20.8611 0.3260

18 5 36 0 2000 622.89 9.4009 0.2611

19 2 90 0 4000 11261.72 28.4757 0.3164

20 3 32 0 2000 706.11 10.7876 0.3371

21 2 96 0 6000 19324.80 30.4115 0.3168

22 3 60 0 3000 2634.11 18.2712 0.3045

23 2 132 0 12000 163121.04 42.3745 0.3210

24 5 32 0 3000 2298.24 10.1475 0.3171

25 2 100 0 8000 45993.38 30.6394 0.3064

26 3 72 0 4000 6650.19 22.5268 0.3129

27 2 144 12000 Failed 79.4592 0.5518

28 3 96 0 8000 47313.98 31.1368 0.3243

29 2 144 12000 Failed 79.5120 0.5522

30 5 64 0 3000 2641.60 22.6747 0.3543

31 2 144 12000 Failed 79.5970 0.5528

32 3 128 0 12000 142227.49 41.4107 0.3235

Table 2. PSLQ runs to recover minimal polynomials satisfied by exp(8πφ2(1/d, q/d)), where

q is the smallest integer coprime with d. Here m(d, q) is the degree (shown in italics if different

from entry in Table 1), z(d, q) is the number of zero coefficients, P is the precision level in

digits, T is the run time in seconds, and log10M is the size in digits of the central coefficient.

In cases where we failed to find a minimal polynomial, the next-to-last column gives the base-10

logarithm of the norm bound produced by PSLQ (shown in bold), and the last column gives

this value divided by m(d, q).
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d m(d) z(d) P T log10M
log10M

m(d)
3 2 0 400

4 1 0 400

5 4 0 400 0.04 3.7782 0.9446

6 2 0 400 0.04 2.2878 1.1439

7 12 0 400 0.14 16.4171 1.3681

8 5 0 400 0.03 6.1960 1.5490

9 18 0 1000 12.18 32.3999 1.8000

10 4 0 400 0.05 8.7028 2.1757

11 30 0 4000 97.51 66.6944 2.2231

12 16 0 1000 0.35 20.1865 2.5233

13 36 0 6000 227.17 94.9054 2.6363

14 24 0 2000 9.3803 33.3200 2.7767

15 32 0 6000 184.68 96.8105 3.0253

16 16 0 1000 9.25 52.2196 3.2637

17 64 0 20000 40311.96 218.4678 3.4136

18 18 0 2000 12.75 64.8446 3.6025

19 90 0 20000 Failed 163.0918 1.8121

20 17 0 2000 12.1360 64.1039 4.0065

Table 3. PSLQ runs to recover minimal polynomials satisfied by exp(8πψ2(1/d, 1/d)). Here

m(d) is the degree, z(d) is the number of zero coefficients, P is the precision level in digits, T

is the run time in seconds, and log10M is the size in digits of the central coefficient. In the one

case where we failed to find a minimal polynomial, the next-to-last column gives the base-10

logarithm of the norm bound produced by PSLQ (shown in bold), and the last column gives

this value divided by m(d).

for these cases have degrees higher than 144, and that significantly more computation will

be required to recover them. Indeed, formula (92) predicts m(27) = 162, m(29) = 196 and

m(31) = 240, so that unwittingly our failed cases confirm (92).

A similar conclusion holds for the failed cases in Table 2. However, in Table 3, in the one

case of failure, the last-column bold value is less than the corresponding figure for most of

the successful cases. But given that the degrees in Table 3 are, in most cases, the same

as corresponding entries in Table 1, it seems likely that exp(8πψ2(1/19, 1/19)) does satisfy

a minimal polynomial of degree 90, as listed in the table, although evidently more than

20,000-digit precision will be required to recover the vector of coefficients.
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−1 + 21888α+ 5893184α2 + 15077928064α3 − 3696628330464α4 − 287791501240448α5 − 30287462976198976α6

+4426867843186404992α7 − 554156920878198587888α8 + 10731545733669133574528α9

+120048731928709050250048α10 + 4376999211577765512726656α11 − 279045693458194222125366432α12

+18747586287780118903854334848α13 − 643310226865188446831485766208α14

+12047117225922787728443496655488α15 − 117230595100328033884939566091384α16

+667772184328316952814362214365568α17 − 4130661734713288144037409932696512α18

+72313626239383964765274946226530432α19 − 1891420571205861612091802761809141088α20

+38770881730553471470590641060872686464α21 − 577943965397394779947709633563006963008α22

+6279796382074485140847650604801614559872α23 − 50438907678331243798448849245156136801232α24

+305806320133365055812520453224169520739712α25 − 1441007171934715336769224848138270812591296α26

+5554617356232728647085822946642640269497472α27 − 20280024430170705107000630261773759070647328α28

+99541720739995105011861264308551867164583808α29 − 754081464712315412970559119390477134883548736α30

+6271958646895434365874802435136411922022336128α31 − 45931349314815625339442690290912948480194150172α32

+280907040806572157908285324812126135484630889344α33 − 1427273782916972532576299009596755423149111059136α34

+6055180299673737231932804443230077408291723908736α35 − 21609910939164553316101994301952988793013291135584α36

+65433275736596914909292838375737685959952141180288α37 − 169928170513492897108417040254326115991438719391296α38

+385709310577705218843549196766620216295554031550592α39 − 801233230832691550861608914233661767474963249815792α40

+1706210557291030772074402183123327251333271061516160α41 − 4421210594351357102505784181831242174063263551938496α42

+14444199585866329915643888187597383540233619718619776α43 − 50968478530199956388487913417905125665738409426112032α44

+169891313454945514927724813351516976839425267825908096α45 − 506612996672385619931633440499093959534203673546181440α46

+1330573388204326565144545192834096788469932897185696896α47 − 3069501638444045841407951432645059776135089489403138888α48

+6226636397646752257692349351542872634032398917736673152α49 − 11133383491631126059761752734485434504397040890449485504α50

+17601823309919260471943648355479182983209248554083752576α51 − 24723027443995082126054012492323603544226813344022687712α52

+31141043717679289808081270766611355726695735914995681664α53 − 35982430389670551550204799905599476866868765647852189248α54

+40292583920117898286863491450657424717015372825433076864α55 − 48512188214363976290470868896252008979896310883132967248α56

+69275112214095149977288310632868535966705567728055958400α57 − 114516830148561378617778209682642099604147034577152904128α58

+195760470467323759899736578743283333538805684128806803072α59 − 317349593507106729834513764473487031789280056911012860320α60

+468944248086031450001465269696090117959962662732817675648α61 − 622467103741378906100611838210632752408312516281305008960α62

+738516443137003178837650661261546833168555909499151978624α63 − 781916756680856373187881889706233393197646662361906135622α64

+738516443137003178837650661261546833168555909499151978624α65 − 622467103741378906100611838210632752408312516281305008960α66

+468944248086031450001465269696090117959962662732817675648α67 − 317349593507106729834513764473487031789280056911012860320α68

+195760470467323759899736578743283333538805684128806803072α69 − 114516830148561378617778209682642099604147034577152904128α70

+69275112214095149977288310632868535966705567728055958400α71 − 48512188214363976290470868896252008979896310883132967248α72

+40292583920117898286863491450657424717015372825433076864α73 − 35982430389670551550204799905599476866868765647852189248α74

+31141043717679289808081270766611355726695735914995681664α75 − 24723027443995082126054012492323603544226813344022687712α76

+17601823309919260471943648355479182983209248554083752576α77 − 11133383491631126059761752734485434504397040890449485504α78

+6226636397646752257692349351542872634032398917736673152α79 − 3069501638444045841407951432645059776135089489403138888α80

+1330573388204326565144545192834096788469932897185696896α81 − 506612996672385619931633440499093959534203673546181440α82

+169891313454945514927724813351516976839425267825908096α83 − 50968478530199956388487913417905125665738409426112032α84

+14444199585866329915643888187597383540233619718619776α85 − 4421210594351357102505784181831242174063263551938496α86

+1706210557291030772074402183123327251333271061516160α87 − 801233230832691550861608914233661767474963249815792α88

+385709310577705218843549196766620216295554031550592α89 − 169928170513492897108417040254326115991438719391296α90

+65433275736596914909292838375737685959952141180288α91 − 21609910939164553316101994301952988793013291135584α92

+6055180299673737231932804443230077408291723908736α93 − 1427273782916972532576299009596755423149111059136α94

+280907040806572157908285324812126135484630889344α95 − 45931349314815625339442690290912948480194150172α96

+6271958646895434365874802435136411922022336128α97 − 754081464712315412970559119390477134883548736α98

+99541720739995105011861264308551867164583808α99 − 20280024430170705107000630261773759070647328α100

+5554617356232728647085822946642640269497472α101 − 1441007171934715336769224848138270812591296α102

+305806320133365055812520453224169520739712α103 − 50438907678331243798448849245156136801232α104

+6279796382074485140847650604801614559872α105 − 577943965397394779947709633563006963008α106

+38770881730553471470590641060872686464α107 − 1891420571205861612091802761809141088α108

+72313626239383964765274946226530432α109 − 4130661734713288144037409932696512α110

+667772184328316952814362214365568α111 − 117230595100328033884939566091384α112

+12047117225922787728443496655488α113 − 643310226865188446831485766208α114

+18747586287780118903854334848α115 − 279045693458194222125366432α116

+4376999211577765512726656α117 + 120048731928709050250048α118 + 10731545733669133574528α119

−554156920878198587888α120 + 4426867843186404992α121 − 30287462976198976α122

−287791501240448α123 − 3696628330464α124 + 15077928064α125 + 5893184α126 + 21888α127 − α128

Table 4. Minimal polynomial discovered by PSLQ for α = exp(8πφ2(1/32, 1/32)).
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7.2. Numerical discovery of Ωm(x, y) polynomials

In our analysis of the Ωm(x, y) polynomials, we employed the following computational strategy.

Freely extrapolating from the cases m = 2 and m = 3, we hypothesized that these polynomials

are all of the form

Ωm(x, y)
?
= Pm(x, y) = p0(x) + p1(x)y + p2(x)y2, (93)

where p0(x) and p2(x) have only even powers of x and are of degree 2m2, while p1(x) has only

odd powers of x and is of degree 2m2 + 1. Note that the total number of terms of Pm(x, y)

is thus 3(m2 + 1). With this reckoning in mind, we arbitrarily selected some real z, such as

z = 1, then numerically computed x = λ(z), y = λ(mz) and all 3(m2 + 1) terms of Pm(x, y)

to very high precision. This 3(m2 + 1)-long vector was then input to a PSLQ program, which

produced a vector of integers, which then are the coefficients of P (x, y), and, thus, of Ωm(x, y).

This procedure successfully recovered plausible Ωm(x, y) polynomials up to m = 7, which run

required 4000-digit arithmetic and 7.5 processor-hours computer run time. The next case of

interest, m = 11, would require much higher precision and many times more computer run

time. After computer-algebraic massaging we recovered

λ(7z)
?
= λ(z)

(
Q7(λ(z))

Q̂7(λ(z))

)2

(94)

where

Q7(x) = x24 − 196x22 + 1764
√

2x21 − 16422x20 + 48888
√

2x19 − 200732x18

+ 290052
√

2x17 − 559993x16 + 243936
√

2x15 + 544152x14 − 1480248
√

2x13

+ 3758860x12 − 3331440
√

2x11 + 4457992x10 − 2298072
√

2x9 + 1821407x8

− 543648
√

2x7 + 231532x6 − 29484
√

2x5 − 70x4 + 1848
√

2x3 − 812x2

+ 84
√

2x− 7,

and Q̂7 reverses the coefficients of Q7, as was the case with (71) and (77).

8. Closed forms for n = 3, 4 dimensions

The only nontrivial closed form evaluation of φ3 of which we are aware is that of Forrester and

Glasser [10, 6, 7]. Namely

4πφ3(1/6) = M3(1,1/6) =
∑

m∈Z3

(−1)1·m

|m− 1/6|

=
√

3.

A careful search for closed forms φ3(r) seems called for.
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We also have access to a splitting algorithm for very high precision computation of φn
values. (See [9, Sec 3.5] and [8] for relevant series forms.) Thence, to 1000 places

φ4(1/6, 1/6, 1/6, 1/6) =

0.1598295944178901737538686709387968761639933022144751037391120691681838842744\

209064806793412115298503409343583548679702288709168670207456499599800486154108\

308165030043936153109658545566067935390541166323196740557596875085706590081648\

013179231342864216112479518653976132625873221005912039529813868011734049817551\

508567833965177341021725140962373469383292594983556975941002041270309026720362\

867404154000999515556155877859315248933268525767350366384980561471158844878559\

022481927005081171952246111536064311228653311696791690164965431933924469708502\

754419428439446777269398123987112367163919553812864963576841446876027640005161\

786754254941372509144587265751232911776700205737574810405772940786524434341685\

453710838983862891142087879809840401056128726071492273488926720130803026529300\

965224446071196799462710004752411247479068658082206364885402729179680334639994\

151615502429422728361803516635947997086766657240209621800578398634855864575107\

587329752224597845527919791870348445538391351719323110622750092965479047671053\

688923350047856706156573591954178209161393651658651971850621985132438367289973\

2877520923444250719180858848398553109463938921...

Recall that we have closed forms for φ2(1/6) and φ3(1/6). Should one have intuition as

to what shape a closed form for the above φ4(1/6) might take, this provides substantial data.

8.1. The problem of inversion

The inverse problem is interesting. For example, for n > 1, what points in the cube [−1/2, 1/2]n

have φn = 1? (Note that every nonnegative real value of φn must occur on this cube; moreover

there will be contours of equipotential, so that we expect φn(r) = c for constant c ∈ [0,∞) to

have uncountably many solutions r.) Take

a := 0.21321087149714956794918011030024508,

whence the fast series methods can be used to show

φ3(a, a, a) = 1.0000000000000000000000000(2) . . .
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Appendix A.

We return to

V2(x, y; s) =
∞∑

m,n=−∞

cos[π(2m+ 1)x] cos[π(2n+ 1)y]

[(2m+ 1)2 + (2n+ 1)2]s
,

reminding ourselves of the normalization φ2(x, y) = 1
π2V2(x, y; 1). First we decouple the double

sum into a product of two single sums using the Mellin transform as defined by

Γ(s)Ms[f(t)] :=

∫ ∞
0

ts−1f(t)dt

so

V2(x, y; s) = Ms

(
∞∑

m=−∞

q(2m+1)2 cos[π(2m+ 1)x]
∞∑

n=−∞

q(2n+1)2 cos[π(2n+ 1)y]

)
(A.1)

where q = e−t. Note that in terms of classical theta functions [6, Ch. 2] we can write
∞∑

m=−∞

q(2m+1)2 cos[π(2m+ 1)x] = ϑ2(q4, x).

Appendix A.1. Specific values of x and y

We can find the q−series in (A.1) for various values of x, y.

For x = 0 we have

∞∑
m=−∞

q(2m+1)2 cos[π(2m+ 1)x] = 2
(
q + q9 + q25 + q49 + q81 + q121 + q169 . . .

)
= ϑ2(q4).

For x = 1/4 we have

∞∑
m=−∞

q(2m+1)2 cos[π(2m+ 1)x] =
2√
2

(
q − q9 − q25 + q49 + q81 − q121 − q169 . . .

)
=

1√
2
ϑ5(q4).

So

V2(1/4, 1/4; s) = Ms
1

2
ϑ2

5(q4) = Msϑ2(q8)ϑ4(q8) = 2−3sMsϑ2ϑ4 = 21−sL−8(s)L8(s),

see [17, Table 1].
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For x = 1/3 we have

∞∑
m=−∞

q(2m+1)2 cos[π(2m+ 1)x = q − 2q9 + q25 + q49 − 2q81 + q121 + . . . =
1

2

[
ϑ2(q4)− 3ϑ2(q36)

]
.

Thus

V2(1/3, 1/3; s) = Ms2
−2
[
ϑ2(q4)− 3ϑ2(q36

]2
= Ms2

−2−2s
[
ϑ2 − 3ϑ2(q9

]2
= Ms2

−2−2s
[
ϑ2

2 − 6ϑ2ϑ2(q9) + 9ϑ2
2(q9)

]
(A.2)

Now [17] provides

Msϑ
2
2 = 22s+1(1− 2−s)L1(s)L−4(s)

while

Ms9ϑ
2
2(q9) = 22s+132−2s(1− 2−s)L1(s)L−4(s).

All that is needed now to resolve (A.2) is Msϑ2ϑ2(q9).

Appendix A.2. More theta manipulations

Two known results are required. These are

Ms[ϑ3ϑ3(q9)− 1] =

(1 + 31−2s)L1(s)L−4(s) + L−3(s)L12(s), (A.3)

Ms[ϑ3ϑ3(q36) + ϑ3(q4)ϑ3(q9)− 2] = (1− 2−s + 21−2s)(1 + 31−2s)L1(s)L−4(s)

+ (1 + 2−s + 21−2s)L−3(s)L12(s), (A.4)

where (A.3) may be found in [17], while (A.4) was communicated by Mark Watkins of Bristol,

see [22, 7]. From (A.3) it is simple to deduce that

Ms[ϑ4ϑ4(q9)− 1] = −(1− 21−s)(1 + 31−2s)L1(s)L−4(s)− (1 + 21−s)L−3(s)L12(s).

Now

ϑ2(q4)ϑ2(q36) =
1

4
[ϑ3 − ϑ4][ϑ3(q9)− ϑ4(q9)] =

1

4
[ϑ3ϑ3(q9) + ϑ4ϑ4(q9)− ϑ3ϑ4(q9)− θ4θ3(q9)]

ϑ3ϑ3(q36) + ϑ3(q4)ϑ3(q9) =
1

2

{
ϑ3

[
ϑ3(q9) + ϑ4(q9)

]
+ [ϑ3 + ϑ4]ϑ3(q9)

}
=

1

2
[2ϑ3ϑ3(q9) + ϑ3ϑ4(q9) + ϑ4ϑ3(q9)]. (A.5)

Thus, we have

2ϑ2(q4)ϑ2(q36) + ϑ3ϑ3(q36) + ϑ3(q4)ϑ3(q9) =
3

2
ϑ3ϑ3(q9) +

1

2
ϑ4ϑ4(q9).
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Taking Mellin transforms of both sides of this equation gives us

21−2sMsϑ2ϑ2(q9) = − (1− 2−s + 21−2s)(1 + 31−2s)L1(s)L−4(s) (A.6)

− (1 + 2−s + 21−2s)L−3(s)L12(s)

+
3

2

[
(1 + 31−2s)L1(s)L−4(s) + L−3(s)L12(s)

]
+

1

2

[
−(1− 21−s)(1 + 31−2s)L1(s)L−4(s)− (1 + 21−s)L−3(s)L12(s)

]
,

and eventually

Msϑ2ϑ2(q9) = 2s
[
(1− 2−s)(1 + 31−2s)L1(s)L−4(s)− (1 + 2−s)L−3(s)L12(s)

]
. (A.7)

Finally one arrives at

V2(1/3, 1/3; s) = 2−1−s [−(1− 2−s)(1− 32−2s)L1(s)L−4(s) + 3(1 + 2−s)L−3(s)L12(s)
]
,

which is (35).

Recall that (1− 32−2s) factors as (1 + 31−s)(1− 31−s), that lims→1(1− 31−s)L1(s) = log 3,

and that

L−4(1) =
π

4
, L−3(1) =

√
3π

9
, L12(1) =

1√
3

log(2 +
√

3).

Gathering everything together we also have

V2(1/3, 1/3; 1) =
π

8
log

(
3 + 2

√
3

3

)
,

as asserted in (31). Similarly

V2(0, 1/3; s) = Ms2
−1ϑ2(q4)

[
ϑ2(q4)− 3ϑ2(q36)

]
= Ms2

−1−2s
[
ϑ2

2 − 3ϑ2ϑ2(q9
]

which finally gives

V2(0, 1/3; s) = 2−1−s [(1− 2−s)(1− 32−2s)L1(s)L−4(s) + 3(1 + 2−s)L−3(s)L12(s)
]
.

It is also possible to obtain (A.3) and (A.7) from [6, §4.7].

Remark 22. The V2 lattice sum can be given a fast series

V2(x, y; s) :=
∑

m,n∈O

cos(πmx) cos(πny)

(m2 + n2)s
(A.8)

=
23/2−sπs

Γ(s)

∑
n∈O+

u∈Z

(−1)u
(
|u+ x|
n

)s−1/2

K1/2−s(πn|u+ x|) cos(πny),

where Kν is a standard modified Bessel function. For s = 1 this series collapses somewhat

further into π2 times our series (23) for Poisson potential φ2.
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Appendix B.

As explained in reference [9], there has been a typographical issue propagated since 1974

[11, 12, 7] concerning the forms (46), (47). When the literature entries are corrected, we

obtain the present formula (47) as a Poisson solution for the jellium scenario.

This successful development for ψ2 can be echoed to develop a ϑ-representation for our

Madelung solution φ2(x, y), as follows. The (n = 2)-dimensional instance of (22) is

φ2(x, y) =
1

π

∑
p∈O+

sinh
(
πp
(

1
2
− |x|

))
cos(πpy)

p cosh(πp/2)
.

We cast this into a double series by expanding the sinh/cosh exponentials, then to employ the

odd-sum formula ∑
d∈O+

ud

d
=

1

2
log

1 + u

1− u
.

On defining z = π(y+ ix)/2, q := e−π, one has after some tedium, and setting z∗ = x+ iy, that

φ2(x, y) :=
1

4π
log

(
1 + e2iz

1− e2iz
· 1 + e2iz∗

1− e2iz∗

)
+

1

4π

∑
u≥1

(−1)u log

(
1 + 2 cos(2z) qu + q2u

1− 2 cos(2z) qu + q2u
· 1 + 2 cos(2z∗) qu + q2u

1− 2 cos(2z∗) qu + q2u

)
.

Happily, the u-sum can be written as the log of an infinite product, and then the classical

product formulae for Jacobi ϑ-functions may be used, giving in straightforward fashion our

(48).

It is interesting that experimental mathematics has been used here not to develop a formula,

but to “debug” one. Fast series were found not to agree with older ϑ representations; moreover,

the same extreme-precision numerics fully verify our solutions φ2(x, y) and ψ2(x, y), in the

respective forms (48) and (47).

Appendix C.

We turn to evaluation of ψ2 without the 1/4π2 factor, i.e.,

W2(x, y, s) :=

′∑
m,n∈Z

cos(2πmx) cos(2πny)

(m2 + n2)s
.

As before decouple the double sum into a product of two single sums using the Mellin

transform defined by

Γ(s)Ms[f(t)] =

∫ ∞
0

ts−1f(t)dt
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so

W2(x, y, s) = Ms

[
∞∑

m=−∞

qm
2

cos(2πmx)
∞∑

n=−∞

qn
2

cos(2πny)

]′
where q = e−t, and the case where m = n = 0 has to be excluded. Then

W2(x, y, s) = Ms

[
4
∞∑
m=1

qm
2

cos(2πmx)
∞∑
n=1

qn
2

cos(2πny) (C.1)

+ 2
∞∑
m=1

qm
2

cos(2πmx) + 2
∞∑
n=1

qn
2

cos(2πny)
]
.

Again we can identify the q-series for a few individual cases of x and y.

For x = 0 we have
∞∑
m=1

qm
2

= q + q4 + q9 + q16 + q25 + q36 + q49 . . . =
(θ3 − 1)

2
.

For x = 1/2 we have

∞∑
m=1

qm
2

cos(πm) = −q + q4 − q9 + q16 − q25 + q36 − q49 . . . =
(θ4 − 1)

2
.

For x = 1/4 we have

∞∑
m=1

qm
2

cos(πm/2) = −q4 + q16 − q36 + q64 − q100 + q144 . . . =
[θ4(q4)− 1]

2
.

Using (C.1) we find

W2(0, 0, s) = Ms(θ
2
3 − 1) = 4ζ(s)L−4(s) (C.2)

W2(1/2, 1/2, s) = Ms(θ
2
4 − 1) = −4(1− 21−s)ζ(s)L−4(s) = −π log 2, for s = 1. (C.3)

W2(0, 1/2, s) = Ms(θ3θ4 − 1) = −4.2−s(1− 21−s)ζ(s)L−4(s) = −π log 2

2
, for s = 1.

(C.4)

These of course are well-known.

But we can now add

W2(1/4, 1/4, s) = Ms

[
θ2

4(q4)− 1
]

= −4.2−2s(1− 21−s)ζ(s)L−4(s) = −π log 2

4
, for s = 1.

W2(0, 1/4, s) = Ms

[
θ3θ4(q4)− 1

]
= Ms

{
[
[
θ3(q4) + θ2(q4)

]
θ4(q4)− 1

}
= Msθ2(q4)θ4(q4) +Ms

[
θ3(q4)θ4(q4)− 1

]
= 2L−8(s)L8(s)− 4.2−3s(1− 21−s)ζ(s)L−4(s). (C.5)
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When s = 1

W2(0, 1/4, 1) =
π

4
log

(4 + 3
√

2)

2
.

Similarly

W2(1/2, 1/4, s) = Ms

[
θ4θ4(q4)− 1

]
= Ms

{
[
[
θ3(q4)− θ2(q4)

]
θ4(q4)− 1

}
= Ms

[
θ3(q4)θ4(q4)− 1

]
−Msθ2(q4)θ4(q4)

= − 4.2−3s(1− 21−s)ζ(s)L−4(s)− 2L−8(s)L8(s). (C.6)

and we have

W2(1/2, 1/4, 1) = −π
4

log(4 + 3
√

2).

It is possible to express the q-series found when x = 1/3 in terms of theta functions. For

x = 1/3
∞∑
m=1

qm
2

cos(2πm/3) = − 1

2
(q + q4 − 2q9 + q16 + q25 − 2q36 + q49 + q64 − 2q81 . . .

=
1

2

[
3θ2(q36)− (θ3 − 1)

2

]
, (C.7)

but going further has in this case proven intractable.

For x = 1/6 we have

∞∑
m=1

qm
2

cos(πm/3) = − 1

2
(q − q4 − 2q9 − q16 + q25 + 2q36 + q49 − q64 − 2q81 . . .

=
1

2

{
(1− θ4)

2
− 3[1− θ4(q9)]

2

}
. (C.8)

It is then found that

W2(1/6, 1/6, s) = Ms
1

4

{
θ2

4 − 1− 6
[
θ4θ4(q9)− 1

]
+ 9

[
θ2

4(q9)− 1
]}

(C.9)

=
1

2

[
(1− 21−s)(1− 32−2s)ζ(s)L−4(s) + 3(1 + 21−s)L−3(s)L12(s)

]
.

(C.10)

When s=1

W2(1/6, 1/6, 1) =
π log(2 +

√
3)

3


