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Résumé. En combinant des concepts de thorie additive des nom-
bres avec des rsultats sur les dveloppements binaires et les sries
partielles, nous tablissons de nouvelles bornes pour la densit de 1
dans les dveloppements binaires de nombres algbriques rels. Un
rsultat clef est que si un nombre rel y est algbrique de degr D > 1,
alors le nombre #(|y|, N) de 1 dans le dveloppement de |y| parmi
les N premiers chiffres satisfait

#(|y|, N) > CN1/D

avec un nombre positif C (qui dpend de y), la minoration tant
vraie pour tout N suffisamment grand. On en dduit la transcen-
dance d’une classe de nombres rels

∑
n≥0 1/2f(n) quand la fonc-

tion f , valeurs entires, crot suffisamment vite, disons plus vite
que toute puissance de n. Grce ces mthodes on redmontre la
transcendance du nombre de Kempner–Mahler

∑
n≥0 1/22n

; nous
considrons galement des nombres ayant une densit sensiblement
plus grande de 1. Bien que le nombre z =

∑
n≥0 1/2n2

ait une den-
sit de 1 trop grande pour que nous puissions lui appliquer notre
rsultat central, nous parvenons dvelopper une analyse fine de
thorie des nombres avec des calculs tendus pour rvler des proprits
de la structure binaire du nombre z2.

Abstract. Employing concepts from additive number theory, to-
gether with results on binary evaluations and partial series, we
establish bounds on the density of 1’s in the binary expansions
of real algebraic numbers. A central result is that if a real y has
algebraic degree D > 1, then the number #(|y|, N) of 1-bits in
the expansion of |y| through bit position N satisfies

#(|y|, N) > CN1/D
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for a positive number C (depending on y) and sufficiently large
N . This in itself establishes the transcendency of a class of re-
als

∑
n≥0 1/2f(n) where the integer-valued function f grows suffi-

ciently fast; say, faster than any fixed power of n. By these meth-
ods we re-establish the transcendency of the Kempner–Mahler
number

∑
n≥0 1/22n

, yet we can also handle numbers with a sub-
stantially denser occurrence of 1’s. Though the number z =∑

n≥0 1/2n2
has too high a 1’s density for application of our cen-

tral result, we are able to invoke some rather intricate number-
theoretical analysis and extended computations to reveal aspects
of the binary structure of z2.

1. Introduction

Research into the statistical character of digit expansions is often focused
on the concept of normality. We call a real number b-normal if its base-b
digits are random in a certain technical sense (see [31], [21], [3], and refer-
ences therein). Qualitatively speaking, b-normality requires every string of
k consecutive base-b digits to occur, in the limit, 1/bk of the time, as if the
digits are generated by tossing a “fair” b-sided die. In spite of the known
fact that almost all numbers are b-normal (in fact almost all are absolutely
normal, meaning b-normal for every base b = 2, 3, . . . ) not a single, shall
we say “genuine” fundamental constant such as π, e, log 2 is known to be
b-normal for any b. Artificially constructed normals are known, such as the
2-normal binary Champernowne number [9]

C2 = (0.11011100101110 . . . )2,

obtained by sheer concatenation of the binary of positive integers. Previ-
ous research that motivates the present work includes [3], where a certain
“Hypothesis A” relevant to chaotic maps is shown to imply 2-normality of
π, log 2, ζ(3); and [4], where the historical work of Korobov, Stoneham and
others is augmented to establish b-normality of, shall we say, “less artificial”
constants such as the numbers

∑
n≥0 1/(cnbc

n
) where b, c > 1 are coprime.

Intriguing connections with yet other fields—such as ergodic theory—are
presented in [22].

Of interest for the present work is that all real algebraic irrationals are
widely believed—shall we say suspected—to be absolutely normal (and this
belief is at least a half-century old; see for example [6, 7]). This suspicion
is based on numerical and visual evidence that the digit expansions of
algebraics do appear empirically “random.” Yet again, the mathematical
situation is as bleak as can be: Not a single algebraic real is known to
be b-normal, nor has a single algebraic real irrational been shown not to
be b-normal; all of this regardless of the base b. Though we expect every
irrational algebraic real is absolutely normal, for all we know it could even
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be that some algebraics are absolutely abnormal, i.e. not b-normal for any
b whatsoever (absolutely abnormal numbers do exist; see [28]).

Herein we focus on the binary scenario b = 2, and though we do not
achieve normality results per se, we establish useful lower bounds on the
occurrence of 1-bits in positive algebraics. Our central result is that if y
is a real algebraic of degree D > 1, then there exists a positive number
C (depending only on y) such that for sufficiently large N the number
#(|y|, N) of 1’s in the binary expansion of |y| through the N -th bit position
satisfies

#(|y|, N) > CN1/D.

To achieve this bound we borrow ideas from additive number theory; in
particular we employ the notion of additive representations. This notion
is combined with our own bounds on the count of 1-bits resulting from
binary operations, and also with previous observations on “BBP tails” that
arise from arbitrary left-shifts of infinite series. In Section 6 we define and
elaborate on BBP tails.

Irrational numbers y for which #(|y|, N) cannot achieve the above bound
for any degree D are necessarily transcendental. In this way we easily re-
establish the transcendency of the Kempner–Mahler number

M =
∑
n≥0

1
22n ,

first shown to be transcendental by Kempner [19], but the transcendency
cannot be established directly from the celebrated Thue–Siegel–Roth the-
orem on rational approximations to algebraics (there are interesting anec-
dotes concerning Mahler’s approach to such an impasse, including his re-
sults on p-adic Thue–Siegel theory and his functional methods; see [26, 27,
29]). Incidentally, the number M above is sometimes called the Fredholm
number, but this attribution may be historically erroneous [35]. (See also
[1] for more on the number M .)

We can also handle numbers having a higher density of 1’s than does M .
For example, by our methods the Fibonacci binary

X =
∑
n≥0

1
2Fn

having 1’s at Fibonacci-number positions 0, 1, 1, 2, 3, 5 . . . is transcenden-
tal. Now X was proved transcendental some decades ago [27] and explicit
irrationality measures and certain continued-fraction properties are known
for X [36]. In the present treatment, we can handle numbers like X but
where the growth of the exponents is more general than the classic growth
of the Fn.
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With our central result we establish the transcendency of numbers whose
1-bits are substantially more dense than in the above examples, an example
of such a “denser” number being∑

n≥3

1
2bnlog log nc .

Incidentally, in the late stages of the present research project we found
that this notion of “digital thinking” to establish results in analysis had
been foreshadowed by a specific, pedagogical proof by M. Knight [20] that
for any base b > 1 ∑

n≥0

1
b2n

is transcendental (note that b = 2 gives the number M above). The author
used terms such as “islands” for flocks of digits guarded on both sides by
enough zeros to avoid carry problems when integral powers of a real number
are taken. As will be seen, such notions pervade also our own treatment;
however our results pertain to general 1-bit densities and not to specific
real numbers. Other historical foreshadowings of our approach exist [34]
[25]. (See also our Section 11 on open problems.)

Aside from transcendency results, we can employ the central theorem to
establish bounds on the algebraic degree. For example, we shall see that∑

n≥0

1
2nk ,

∑
p prime

1
2pk

must have algebraic degrees at least k, k + 1 respectively. (In this context
we think of a transcendental number as having infinite degree.) Thus for
example,

∑
1/2p2

must be an at-least-cubic irrational.
There are interesting numbers that do not fall under the rubric of our

central theorem, such as the “borderline” case:

z =
∑
n≥0

1
2n2 =

1
2

(
1 + θ3

(
1
2

))
,

where θ3 is the standard Jacobi theta function. The problem is that
#(z,N) ∼

√
N , so our central theorem does not give any information on

the algebraic degree of z. Yet we are able to use further number-theoretical
analysis—notably the theory of representations of integers as sums of two
squares—to establish quadratic irrationality for z. We further argue, on
the basis of such analysis, that z2 has almost all 0’s, and more precisely
that the 1’s count through the N -th bit position has a certain asymptotic
behavior. Incidentally the number z, being essentially the evaluation of
a theta function at an algebraic argument, is known to be transcendental
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by other methods [30, 5, 12]. We stress that our binary approach is an
apparently new way to look at such issues.

2. Additive representations

For any real nonnegative number x we consider the binary expansion

x = (. . . x−3x−2x−1x0 . x1x2x3 . . . )2.

The assignment of (finitely many) nonpositive indices for bits xi to the left
of the decimal (or if you will, binary) point is a convenience, for we shall, of
course, be concentrating a great deal on the bits to the right. We adopt the
convention that no x can end with infinitely many successive 1’s, and this
forces uniqueness of the binary expansion. Next we denote the 1’s-position
set of x by

P(x) = {p : xp = 1},
and further define r1(x, p) = 1 if xp = 1, else 0. (The rationale for the
notation “r1” will be momentarily evident.) Now the number of 1-bits
through bit position N inclusive is

#(x,N) =
∑

m≤N

r1(x,m) =
∑

p∈P(x), p≤N

1.

Note that when x is a nonnegative integer, #(x, 0) is the number of 1’s
in x. So for example #(7, 0) = 3. On the other hand, for x =

√
2 =

(1.011010100 . . . )2, say, we have #(x, 0) = 1, #(x, 5) = 4, and so on.
We next introduce the representation count

rd(x, n) = #{(p1, . . . , pd) ∈ Pd : p1 + · · ·+ pd = n},

just as in additive number theory where one studies representations of in-
tegers n as sums of primes, or squares, and so on. It is evident that rd can
be expressed as an acyclic convolution:

rd(x, n) =
∑

i+j=n

rd−1(x, i)r1(x, j).

We shall also employ a step-function on integers r, namely H(r) = 1 if r >
0, else 0. Thus H(rd(n)) = 1 signifies that n has at least one representation
p1 + · · · + pd. For our analysis it is a simple but useful combinatorial
observation that the count of representables, call it

ρd(N) =
∑
n≤N

H(rd(x, n)),

satisfies

ρd(N) ≤
∑
n≤N

rd(x, n) ≤ #(x,N)d.(1)
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Also of use will be an attractive relation for positive integral powers of x:

xd =
∑

n

rd(x, n)
2n

.

Unfortunately it is in general extremely difficult to convert partial knowl-
edge of the representation sequence (rd(x, n)) into precise results on the bi-
nary expansion of xd. The problem is that of carry: A summand rd(x, n)/2n

possibly causes carry, about lg rd positions to the left, and thus the sum-
mands interfere (herein lg x means the base-2 logarithm of x). It can be
said that the goal of the present treatment is the circumvention of this carry
problem.

An instructive digression is appropriate here. With a view to additive
number theory, let us define the number

G =
∑

p prime, odd

1
2(p−1)/2

= (0.11101101 . . . )2.

Note that #(G,N) = π(2N+2)−1, where π is the standard prime-counting
function. Then r2(G,N) is precisely the number of representations of 2N+2
as a sum of two odd primes. Even if we knew the truth of the Goldbach
conjecture—in this scenario, that every N > 2 has H(r2(x,N)) = 1—we
would still not immediately know the binary expansion ofG2, because of the
carry problem. For all we know, it could be that the question of irrationality
for G2 is more difficult than the Goldbach conjecture itself. Conversely,
it is unclear whether complete knowledge of the binary expansion of G2

would yield results on the celebrated conjecture. In fact, it is easy to see
that r2(G,N) is unbounded, so arbitrarily long carries (deposition of bits
arbitrarily far to the left of a given position) can be expected.

Similarly, for the number z =
∑

n≥0 2−n2
introduced earlier we know

that z4 has a representation sequence (r4(z4, 0), r4(z4, 1), . . . ) of all positive
entries, on the basis of the Lagrange theorem that every nonnegative integer
is a sum of four squares. Here again, little can be gleaned about the binary
expansion of z4 from this perspective, again because of carry. We study
the number z further in Section 9.

Now back to positive powers of x and representation lists. A sum we
later call a “tail component” defined

Td(x,R) =
∑
m≥1

rd(x,R+m)
2m

,

which we note is 2R times a partial series for the power xd, can be bounded
via combinatorial observations, as in
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Theorem 2.1. For x ∈ (1, 2) (whether algebraic or not) and d ≥ 1 we
have

rd(x, n) ≤
(
n+ d− 1
d− 1

)
.

Moreover, for the sum Td defined above, we have for 0 ≤ R ≤ N the upper
bound

Td(x,R) <
(R+ d)d

(d− 1)!(R+ 1)
≤ (N + d)d

(d− 1)!(N + 1)
and the average bound ∑

0≤R≤N

Td(x,R) <
(N + d)d

(d− 1)!
.

Proof. From the convolution

rd(x, n) =
∑

i+j=n

rd−1(x, i)r1(x, j)

we have

rd(x, n) ≤
∑

i1,...,id∈[0,n],
∑

ij=n

1 =
(
n+ d− 1
d− 1

)
.

Thus Td(x,R) ≤ Ud(R) where

Ud(R) =
∑
m≥1

1
2m

(
R+m+ d− 1

d− 1

)
.

This expression is seen to satisfy the recurrence relation

Ud(R) = 2Ud−1(R) +
(
R+ d− 1
d− 1

)
,

which can be used to establish a finite form for Ud:

Ud(R) =
d−1∑
j=0

(
R+ d
j

)
.

So we have

Ud(R) <
(R+ d)d−1

(d− 1)!

∑
n≥0

(
d− 1
R+ d

)n

=
(R+ d)d

(d− 1)!(R+ 1)
.

Thus, the first bound follows. The bound on the sum
∑
Td is simply

obtained by summing the first bound over the stated range of R. �

Remark. The finite form for Ud(R) noted above is a polynomial in R
with nonnegative coefficients and with main term Rd−1/(d − 1)!, so that
this expression is not only a lower bound for Ud(R), but is also equal to
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it asymptotically. Moreover, it is possible to express Ud(R) as a hypergeo-
metric integral:

Ud(R) =
(R+ d)!
R!(d− 1)!

∫ 1

0
(2− x)d−1xR dx.

We admit that the bounds of Theorem 2.1 and the present remark are
actually stronger than what we need here; however, such stronger bounds
could be useful in future research.

3. Preliminary bound on 1’s density

Let x be a real algebraic irrational. The Thue–Siegel–Roth theorem [33]
says that for any ε > 0 the inequality∣∣∣x− a

b

∣∣∣ < 1
b2+ε

has at most finitely many integer-pair solutions a, b. This means that the
1-bits of such an x cannot be too far apart, in the sense of

Theorem 3.1. For a real positive algebraic irrational number x, and any
δ > 0, the 1’s positions pi ∈ P(x) satisfy, for sufficiently large m,

pm < (2 + δ)pm−1.

Furthermore, for sufficiently large k, the interval(⌊
k

2 + δ

⌋
, k

)
always contains a 1’s position. Finally, the 1’s count through sufficiently
large position n satisfies

#(x, n) > (1− δ) lg n.

Proof. When x is irrational, P(x) is an infinite set, so arbitrarily large pi

can be chosen, with

x−
∑

p∈P(x), p≤pi

1
2p

<
2

2pi+1
.

Now the sum is a rational a/b with b = 2pi , and so the first inequality of the
theorem is clearly satisfied if pi is large enough. The rest of the conclusions
are immediate from said inequality. �

The bound #(x, n) > (1 − δ) lg n is admittedly weak, relative to what we
aim to prove later. It does, however, establish the transcendency of any
number

mα =
∑
n≥0

1
2bαnc



Binary expansions 9

for any real α > 2. Note that the Kempner–Mahler number M = m2 =∑
n≥0 1/22n

lies just out of reach of the Thue–Siegel–Roth implications.
We shall be able to use our binary approach to establish, in fact, the tran-
scendency of mα for any real α > 1.

There is a curious aspect to Theorem 3.1, namely, however weak the
bounds on 1’s counts may be, there is a crucial juncture in what follows (the
central Theorem 7.1) where we need Theorem 3.1 to assail the ubiquitous
problem of carry propagation.

4. Bounds for binary evaluations

For nonnegative integers n we have defined #(n, 0) as the number of
1’s in the binary expansion of n. We proceed to give convexity relations
on binary evaluations, i.e. on sums and products of integers, starting with
some simple observations:

Lemma 4.1. For integers n > 0, j ≥ 0, we have

#(n, 0) ≤ 1 + lg n ≤ n,

#(2jn, 0) = #(n, 0),

#(n+ 2j , 0) = #(n, 0) + 1− kj ,

where in the last relation kj is the number of consecutive 1’s in n counting
from the (−j)-th position inclusive, to the left.

Proof. The first inequality follows from the observation that the total num-
ber B(n) of bits in n (counting 0’s and 1’s) satisfies 2B(n)−1 ≤ n, and
#(n, 0) ≤ B(n). The second statement is obvious (left-shifting by j bits
introduces no new 1’s). The third statement follows by the simple rule of
add-with-carry. �

This lemma leads to

Theorem 4.2 (Convexity relations). For nonnegative integers m,n we
have upper bounds on the 1’s counts of evaluations, as

#(m+ n, 0) ≤ #(m, 0) + #(n, 0),

#(mn, 0) ≤ #(m, 0)#(n, 0).

Proof. The first, additive relation follows by repeated application of the
last equality of Lemma 4.1, one application for each 1-bit of m, say. The
second, multiplicative relation follows in similar fashion, by writing mn =
(
∑

2−p)n, where p runs through the 1’s positions ofm, and using the second
(shift) relation of Lemma 4.1. �
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It would greatly enhance the present study if we could obtain lower bounds
on the 1’s counts of binary evaluations. The extreme difficulty of such
a program can be exemplified in several ways. Consider the famous fac-
torization of the 7-th Fermat number, namely 2128 + 1, but expressed in
binary:

100000000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000000000000000000001 =

11010011111010101111110000111010111100010100011000000001 ×
1001101010100000001110111010110110100100011001100001100101011101000000001

which display dashes any hope of a useful, unconditional lower bound on
#(mn, 0). Also interesting is this: If a Mersenne number p = 2q−1, with q
prime, say, is a product of two prime factors, say p = fg, then the convexity
Theorem 4.2 implies #(f, 0)#(g, 0) > #(p, 0) = q (recall q is prime so this
# product cannot be q), which means that the factors f, g cannot both be
too sparse with 1’s. For example, 211− 1 = 23 · 89 and each factor has four
1’s; sure enough 4 · 4 > 11.

But for the present study on real numbers, there is a more telling disap-
pointment in regard to lower bounds on 1’s densities of products. Consider
two sets of integers:

S = {n ≥ 0 : n−2j = 0} = {0, 2, 8, 10, 32, 34, 40, 42, . . . },

T = {n ≥ 0 : n−2j+1 = 0} = {0, 1, 4, 5, 16, 17, 20, 21, . . . } = S/2,

so that elements of S, T have 0-bits in all even, odd positions respectively.
Now define associated real numbers:

xS =
∑
s∈S

1
2s
, xT =

∑
t∈T

1
2t
.

It is not hard to show that both of these real-numbers have “square-root”
1’s densities, that is both #(xS , N),#(xT , N) are roughly of order

√
N ,

so that both xS , xT are irrational; in fact the sum xS + xT is irrational,
since the intersection of the S, T sets is just {0} and so there is only one
trivial carry for the sum. However, all of this having been said, it turns out
amazingly enough that one has rational product

xSxT = 2 = (10.0000 . . . )2,

which reveals that two numbers each with square-root 1’s density can have
an extremal 1’s density, in this case a zero density because of carry. By
looking at the representation counts for integers in S + S one may show
x2

S , x
2
T , hence (since 2xSxT = 4) also (xS +xT )2 are irrational. In any case,

we shall be able to handle certain real numbers whose 1’s count is genuinely
less than

√
N .
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Back to the manageable case of upper bounds for binary evaluations,
consider the polynomial

f(x) = ADx
D +AD−1x

D−1 + . . . A1x+A0,

for integers Ai all nonnegative. Then from Lemma 4.1 and Theorem 4.2
we easily have, for nonnegative integers n, the following convexity relation
for polynomial evaluations:

#(f(n), 0) ≤
D∑

d=0

max(0, 1 + lgAd)#(n, 0)d ≤ f(#(n, 0)).

This relation will next be applied to algebraic numbers whose minimum
integer polynomial has all coefficients (except A0) nonnegative.

5. Application of binary-evaluation bounds

Our strongest bounds on 1’s density will be obtained for the class of
real algebraic irrationals for which the coefficients of the minimum integer
polynomial are nonnegative, except for the constant term. We begin with

Lemma 5.1. For irrational x ∈ (1, 2) and a given integral power d, the
inequality

0 < xd − b2Nxcd

2Nd
<
d2d

2N

holds for all sufficiently large N .

Proof. Setting i = b2Nxc, we have 2N ≤ i < 2N+1, and x = i/2N + z,
where z ∈ (0, 1/2N ). Now

xd =
id

2Nd
(1 + 2Nz/i)d,

so that

0 < xd − id

2Nd
<

id

2Nd
((1 + 1/i)d − 1).

Choose M such that d < i for N > M , whence

xd − id

2Nd
<

id

2Nd

2d
i
< (e− 1) d

2(N+1)(d−1)

2Nd
<
d2d

2N
.

�

We are now in a position to state

Theorem 5.2. Let y be a real algebraic of degree D > 1 and assume for
x = |y|/2blg |y|c a minimum integer polynomial equation

ADx
D +AD−1x

D−1 + . . . A1x+A0 = 0,
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where AD > 0 and AD−1, . . . , A1 are nonnegative integers. Then for any
ε > 0 we have

#(|y|, N) > (1− ε)(1 + lgAD)−1/DN1/D

for sufficiently large N (with threshold depending on y, ε).

Proof. Note that x ∈ (1, 2) and because x is a shift of y, the counts
#(x,N),#(y,N) differ only by an integer constant, so we may concen-
trate on x. Observe that A0 is a negative integer. From Lemma 5.1 we can
select N and assign i = b2Nxc so that

xd =
id

2Nd
+ zd,

with zd ∈ (0, d2d/2N ), for 1 ≤ d ≤ D. Now define the integer

YN = 2ND
D∑

d=1

Adi
d2−Nd = 2ND

D∑
d=1

Ad

(
xd − zd

)
,

so that

−A0 =
YN

2ND
+ zN ,

where

0 < zN =
D∑

d=1

Adzd <
1

2N

D∑
d=1

d2dAd.

(It is this last inequality where the signs of the Ai, i > 0 are essential.)
Thus for sufficiently large N we have a fractional part{

YN

2ND

}
= {−A0 − zN} = {1− zN} ≥ 1− C

2N
> 0

for a strictly positive constant C =
∑D

d=1 d2
dAd independent ofN . But this

means for some constant C ′ (also independent of N) that the integer YN

has more than N − C ′ 1-bits. Since #(i, 0) = #(x,N), on using Theorem
4.2, we have (again using in an essential way that Ai ≥ 0 for i > 0)

N − C ′ < #(YN , 0) ≤
D∑

d=1

max(0, 1 + lgAd)#(x,N)d(2)

≤ #(x,N)D

(
(1 + lgAD) +

AD−1

#(x,N)
+ . . .

)
,(3)

and since #(x,N) is unbounded (x is irrational) the result follows. �

A side result is
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Corollary 5.3. If y > 0 is irrational, and there exists an integer d > 1
such that for every η > 0 we have

#(y,N) < ηN1/d

for infinitely many N , then yd is also irrational.

Proof. Assuming yd is rational then for x = y/2blg yc there is a polyno-
mial Axd − B, with positive integers A,B. This polynomial is of the re-
quired form for application of Theorem 5.2, whose conclusion contradicts
lim inf #(y,N)N−1/d = 0. �

So for example the number ∑
n≥0

1
2n5

4

is irrational; the number being 4-th-powered does not, in the sense of Corol-
lary 5.3, have enough 1-bits.

Theorem 5.2 reveals that the assignments y =
√

2 or y = (−1 +
√

5)/2
(the golden mean) each have #(y,N) > (1− ε)

√
N for large enough N ; in

the latter case one may use the polynomial equation x2 +2x−4 = 0, whose
root −1+

√
5 is in (1, 2). On a historical note: J. Samborski, in a published

problem [34], asked for a proof that #(y,N) < 5 · 2N−2—an interesting,
hard bound but asymptotically very much weaker than our square-root
density.

6. Bounds on BBP tails

Now we desire to lift all restrictions on the coefficient signs, except the
high coefficient AD > 0 and contemplate the following representation rela-
tion (in this section we assume x ∈ (1, 2) is algebraic of degree D > 1, see
the remarks opening the proof of Theorem 5.2):

ADx
D + · · ·+A1x+A0 = 0 = A0 +

∑
n≥0

1
2n

D∑
d=1

Adrd(x, n).

Consider a shift by R bits of all entities, so that

−2RA0 = I(x,R) + T (x,R),

where I(x,R) is an integer and the BBP tail is defined

T (x,R) =
∑
m≥1

1
2m

D∑
d=1

Adrd(x,R+m) =
D∑

d=1

AdTd(x,R),
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where as in Section 2 we identify a tail component

Td(x,R) =
∑
m≥1

rd(x,R+m)
2m

.

The concept of BBP tail comes from the Bailey–Borwein–Plouffe formal-
ism [2], whereby one may rapidly compute isolated bits of certain binary
expansions—such as for π, log 2 —by rapid computation of the integer
I(x,R) and rigorous control of the “tail” T (x,R).

Remarkably, it is a fact that for the algebraic x in question, T (x,R) is
always an integer, for the simple reason that T (x,R) = −2RA0−I(x,R). To
facilitate further analysis, we shall require a bound on the average absolute
value of the tails T (x,R) in terms of one value of #(x,N):

Lemma 6.1. Let x be an algebraic number in (1, 2) of degree D > 1 with
minimum integer polynomial ADx

D + AD−1x
D−1 + · · · + A0, so AD > 0.

Let N ≥ 2D and set K = d2D lgNe. Then for 1 ≤ d ≤ D we have∑
1≤R≤N−K

Td(x,R) < #(x,N)d + 1,

and so ∑
1≤R≤N−K

|T (x,R)| <
D∑

d=1

|Ad|
(
#(x,N)d + 1

)
.

Proof. We have∑
R≤N−K

Td(x,R) =
∑
m≥1

2−m
∑

R≤N−K

rd(x,R+m)

≤
K∑

m=1

2−m
∑
R≤N

rd(x,R)

+ 2−K
∑

m>K

2K−m
∑

R≤N−K

rd(x,R+m)

<
∑
R≤N

rd(x,R) + 2−K
∑

K≤R≤N

Td(x,R).

Using (1) and Theorem 2.1 we have∑
1≤R≤N−K

Td(x,R) ≤ #(x,N)d +N−2D(N + 1)d,

and the lemma is proved. �

We shall use Lemma 6.1 to show that if #(x,N) is small, then not too
many values of T (x,R) are positive. Counter to this, the following lemma
gives conditions on when there are many positive tails T (x,R).
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Lemma 6.2. Let x be an algebraic number in (1, 2) of degree D > 1.
Suppose that R0 < R1 are positive integers with rD−1(x,R) = 0 for all
integers R ∈ (R0, R1] and T (x,R1) > 0. Then T (x,R) > 0 for every
integer R ∈ [R0, R1].

Proof. Say the minimum integer polynomial for x is ADx
D +AD−1x

D−1 +
· · · + A0. As the 0-bit of x is 1 it follows that rd(x,N) ≥ rd−1(x,N) for
d ≥ 2. Thus the hypothesis implies that for each d = 1, 2, . . . , D−1 we have
rd(x,R) = 0 for each integer R ∈ (R0, R1]. From the general recurrence
relation on tails,

T (x,R− 1) =
1
2
T (x,R) +

1
2

D∑
d=1

Adrd(x,R) =
1
2
T (x,R) +

1
2
ADrD(x,R).

Assuming inductively that T (x,R) > 0, and using AD > 0, we get T (x,R−
1) > 0. �

7. The central theorem regarding general real algebraic numbers

We have established that for a certain restricted class of algebraics y of
degree D ≥ 2,

#(|y|, N) > (1− ε)(1 + lgAD)−1/DN1/D

for sufficiently large N , where AD is the leading coefficient of the minimum
integer polynomial for the normalized algebraic x = |y|/2blg |y|c. Now we
move to general algebraics, so that there will be no coefficient constraints
except for the natural AD > 0. Fortunately, we shall achieve a bound which
is weaker only by an overall constant factor.

Theorem 7.1. For real algebraic y of degree D > 1 and for any ε > 0 we
have for sufficiently large N (with threshold depending on y, ε)

#(|y|, N) > (1− ε)(2AD)−1/DN1/D,

where AD > 0 is the leading coefficient of the minimum integer polynomial
of x = |y|/2blg |y|c.
Proof. As in the proof of Theorem 5.2, we use the normalized algebraic x ∈
(1, 2), observing that #(x,N),#(|y|, N) differ only by an integer constant,
so again we may concentrate on the bit-counting for x. Suppose #(x,N) ≤
cN1/D. Then from (1) applied for d = D − 1, and the fact that each
rD−1(x,R) is a nonnegative integer, we have that the number of integers
R ≤ N with rD−1(x,R) > 0 is at most cD−1N1−1/D. Say these R’s are
0 = R1 < R2 < · · · < RM , where M ≤ cD−1N1−1/D. Let RM+1 = N .
Trivially we have

M∑
i=1

(Ri+1 −Ri) = N.
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For δ > 0, let I denote the set of numbers i ≤ M such that Ri+1 − Ri ≥
δ
3c

1−DN1/D. (Ultimately we transform δ into the ε of the theorem.) We
have ∑

i∈I

(Ri+1 −Ri) ≥ N − δ

3
c1−DN1/DM ≥

(
1− δ

3

)
N.

Now we wish to show, if i ∈ I and if integer R ∈ (Ri, Ri+1 − D logN ]
has rD(x,R) > 0, then T (x,R− 1) > 0:

T (x,R− 1) ≥ 1
2
AD −

D−1∑
d=1

|Ad|
∑
m≥1

2−mrd(x,R− 1 +m)

=
1
2
AD −

D−1∑
d=1

|Ad|
∑

m>Ri+1−R

2−mrd(x,R− 1 +m)

=
1
2
AD −

D−1∑
d=1

|Ad|2R−Ri+1Td(x,Ri+1 − 1)

≥ 1
2
−N−D

D−1∑
d=1

|Ad|(N + d)d/(d− 1)!N ,

where this last inequality follows from Theorem 2.1. Thus, for sufficiently
large N , the positivity of the tail T (x,R− 1) for such an R is established.
Now if r1(x, j) > 0 and i ≤ M then rD(x,Ri + j) > 0. A key obser-
vation now is: By the Thue–Siegel–Roth implication Theorem 3.1, for N
sufficiently large and for any i ∈ I, there is some integer ji with

ji ∈
(

1
2 + δ/2

(Ri+1 −Ri −D logN), Ri+1 −Ri −D logN
)

and r1(x, ji) > 0. We conclude that rD(x,Ri + ji) > 0, so it follows from
our previous reasoning that T (x,Ri + ji − 1) > 0. Then from Lemma 6.2
we have T (x,R) > 0 for every integer R ∈ [Ri, Ri + ji). Hence T (x,R) > 0
for at least

1
2 + δ/2

∑
i∈I

(Ri+1 −Ri −D logN)

values of R ≤ N . But this last expression is at least

1
2 + δ/2

(
1− δ

3

)
N −DcD−1N1−1/D logN

which is at least (1
2 −

δ
3)N for all sufficiently large values of N .
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We now show that if c is too small, this last conclusion is impossible. By
Lemma 6.1 we have (with K as in the lemma)

∑
R≤N−K

|T (x,R)| ≤
D∑

d=1

|Ad|(#(x,N)d + 1)

≤
D∑

d=1

|Ad|(cdNd/D + 1)

= ADc
DN +O(N1−1/D).

Suppose now that c ≤ ((2+δ)AD)−1/D. It follows from this last calculation
and the fact that each T (x,R) is an integer that T (x,R) > 0 for at most

1
2+δN + O(N1−1/D) values of R ≤ N . So for N sufficiently large, this
assertion is incompatible with the assertion that T (x,R) > 0 for at least
(1
2 −

δ
3)N values of R ≤ N . Finally, for the arbitrary positive δ we set

ε = 1− (1 + δ/2)−1/D to obtain the statement of the theorem. �

8. Implications of the central theorem

Theorem 7.1 can be used to establish transcendency of a class of binary
expansions, as in

Theorem 8.1. Let a function f : R→ R be strictly monotonic increasing,
with f attaining integer values for integer arguments. If for any ε > 0 the
inverse of f satisfies

f−1(y) = O(yε)

then the number

x =
∑
n≥0

1
2f(n)

is transcendental.

Proof. Note that the bit positions f(n) are distinct, so the observation

f−1(N) = #{n > 0 : f(n) ≤ N} = #(x,N)

means #(x,N) = O(N ε), which for algebraic x is incompatible with The-
orem 7.1. �

Corollary 8.2. For any real α > 1 the number

mα =
∑
n≥0

1
2bαnc
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is transcendental. So the Kempner–Mahler number M = m2 and the Fi-
bonacci binary involving the Fibonacci numbers (Fn) = (0, 1, 1, 2, 3, 5, . . . )

X =
∑
n≥0

1
2Fn

are transcendental. Finally, there are transcendental numbers of still greater
1-bit densities, such as

Y =
∑
n≥3

1
2bnlog log nc .

Remark. Recall that the Thue–Siegel–Roth implication Theorem 3.1 han-
dles α > 2.

Proof. As for mα, take n0 = d− log(α− 1)/ logαe so that there is a strictly
monotone function whose ineteger evaluations are f(n) = dαn+n0e, with
f−1(N) = O(logN), so that Theorem 8.1 applies and the partial binary
sum for mα starting from index n0, hence mα itself, is transcendental.
As for the Fibonacci binary, the n-th Fibonacci number can be written
f(n) = ((1 + τ)n − (−τ)n))/

√
5, where τ = (

√
5 − 1)/2, so the growth

of 1’s positions is essentially that of m1+τ and again incompatible with
Theorem 7.1 if X is assumed algebraic. For the number Y it is evident
that #(Y,N) ∼ N1/ log log N which is of slower growth than any positive
power of N . �

We can also use Theorem 7.1 to generate results on algebraic degrees for
certain constants, as in the following (as before let us stipulate that the
algebraic degree of a transcendental is ∞):

Theorem 8.3. For positive integer k the number

Xk =
∑
n≥0

1
2nk

has algebraic degree at least k, while the number

Pk =
∑

p prime

1
2pk

has algebraic degree at least k + 1.

Proof. In the first case, #(Xk, N) = #{nk ≤ N} < CN1/k, so by Theorem
7.1 we must have degree D ≥ k. In the second case we have #(Pk, N) =
#(pk ≤ N) = π(N1/k) < AN1/k/(logN) for a constant A, so that again by
Theorem 7.1, we must have D > k. �

Thus for example neither P2 nor X3 is a quadratic irrational. The case of
X2 is just the previously mentioned number z =

∑
1/2n2

, on which number
we focus attention in the next section.
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9. Study of a “borderline” number

The number

z =
∑
n≥0

1
2n2 =

1
2

(
θ3

(
1
2

)
+ 1

)
is, with respect to the present treatment, a “borderline” case because, as
we have seen, a square-root density of 1’s is beyond reach of our methods.
Recall also as in Section 4 that there are numbers with the same essential
density of 1’s as z but for which products of such numbers can be rational.
Note that

z′ = 2z − 1 = θ3

(
1
2

)
so that

z′
2 =

∑
n≥0

r2(n)
2n

,

where now we are using the standard notation of r2(n) for the number of
representations n = a2 + b2 for a, b ∈ Z, counting sign and order. It will
be convenient therefore to study z′, from which algebraic properties of z
follow. Incidentally z′2 has some interesting numerological features; for one
thing it is very close to π/ log 2; in fact the approximation

z′
2 ≈ π

log 2

(
1 + 2e−π2/ log 2

)2
= 4.53237201425897410082795 . . .

can be obtained via Jacobi θ-transformation, and remarkably is correct to
the implied 23 decimal places in the above display. It is fascinating that
such relations between z′2 and fundamental constants exist even though,
as we shall prove, almost all of the binary bits of z′2 are 0’s.

It is one of the earliest results in additive number theory, due to Jacobi,
that

r2(n) = 4
∑

d|n,d odd

(−1)(d−1)/2.

It turns out that the representation count r2(n) is positive if and only if
every prime p ≡ 3(mod 4) dividing n does so to an even power. Thus, the
representation sequence (r2(0), . . . ) has zeros in any position n = 3k with
(3, k) coprime, and so on. Deeper results on r2 include the fact that the
number of representable integers not exceeding N behaves according to the
Landau theorem: ∑

n≤N

H(r2(n)) ∼ L
N√
logN

,
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where the Landau constant is

L =

1
2

∏
p≡ 3 (mod 4)

(
1− 1

p2

)−1
1/2

= 0.764223653 . . . .

(See [15] for descriptions of this and other facets of sums of squares.) The
Landau density of representable numbers does not on the face of it imply
a similar density of 1-bits in the expansion of z′2.

Evidently we have

z′
2 = 4

∑
d odd

(−1)(d−1)/2

2d − 1
.

This form is reminiscent of the Erdős–Borwein number

E =
∑
n>0

1
2n − 1

=
∑
m>0

d(m)
2m

,

where d(m) denotes the number of divisors of m. The constant E was
proven irrational by Erdős [13] who used number-theoretical arguments
(outlined in [4]) which did, in fact, motivate our present analysis of z′2.
Later the irrationality of such forms was established via Padé approximants,
by P. Borwein [8].

What we shall show is that z′ is not a quadratic irrational, and so neither
is z. In one sense this is stronger than the quoted irrationality results
for the number E. On the other hand, it is already known that theta
functions at algebraic arguments, hence z, z′, are transcendental [5, 12]. To
effect our nonquadratic-irrationality proof, we shall follow the same basic
prescription as for Theorem 7.1; namely, we establish upper bounds on the
size of representations, and employ some knowledge of zero-runs. As for
upper bounds, it is known [17] that for any fixed ε > 0 we have

r2(n) < 2( 1
2
+ε) log n

log log n

for sufficiently large n. Note that this bound is much tighter than the
general one of Theorem 2.1. This tighter bound works well with what we
can show about zero-runs:

Theorem 9.1. Let ε > 0 be arbitrary, but fixed, and define

uε(x) =
1− ε

2L
log x√
log log x

where L is the Landau constant. Then for sufficiently large x there is a
square integer M with M < x and an integer a < M such that r2(n) = 0
whenever

n ≡ a+ i (mod M), 1 ≤ i ≤ uε(x).
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Proof. Let x be large and let

u =
⌊

1− ε

2L
log x√
log log x

⌋
.

Let vp(n) denote the exponent on the prime p in the prime factorization
of n. Cast out from [1, u] any integer o with vp(n) odd for some prime
p < u/ log u, p ≡ 3 (mod 4). Let E denote the set of remaining numbers n,
and let E denote the cardinality of E . Also, let E1 denote the number of
integers in [1, u] which are the sum of two squares, and let E1 denote the
cardinality of E1. By the Landau theorem,

E1 ∼ Lu√
log u

.

Clearly, E1 ⊂ E . In particular, E−E1 is at most the number of integers n ∈
[1, u] divisible by some prime p with u/ log u ≤ p ≤ u and p ≡ 3 (mod 4).
Then

E − E1 ≤ u
∑

u/ log u≤p≤u

1
p

= O (u log log u/ log u) .

We conclude that
E ∼ Lu√

log u
.

Label the members of E as n1, n2, . . . , nE .
Next, let M1 =

∏
pap , where p runs over the primes with p ≡ 3 (mod 4),

p < u/ log u, and ap = 2d(log u)/(2 log p)e. (Thus, ap is the least even
integer with pap ≥ u.) We have logM1 = O(u/ log u).

Let

v =
⌊

log x
1 + ε

⌋
,

and let M2 =
∏
p2 where p runs over the primes p ≡ 3 (mod 4) with

u/ log u ≤ p ≤ v. Then logM2 ∼ v, so that for x sufficiently large we have
M := M1M2 < x. Label the prime factors of M2 as p1, p2, . . . , pF , where
F ∼ v/(2 log v). We have

E ∼ Lu√
log u

∼ 1− ε

2
log x

log log x
,

F ∼ v

2 log v
∼ 1

2(1 + ε)
log x

log log x
,

so that for x sufficiently large we have F ≥ E.
For 1 ≤ i ≤ E let ri be a solution to

ni + riM1 ≡ pi (mod p2
i ).

Further, let the integer r satisfy

r ≡ ri (mod p2
i ), for 1 ≤ i ≤ E.
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Let h be an arbitrary integer. If n is an integer in [1, u] that is not in
E , then vp(n + rM1 + hM) is odd for some prime p|M1 and so r2(n) = 0.
Suppose n = ni ∈ E . Then vpi(n + rM1 + hM) = 1, and so r2(n) = 0.
Thus, with a = rM1 we have that r2(a+ i+ hM) = 0 for 1 ≤ i ≤ u. This
completes the qroof of the theorem. �

Corollary 9.2. For integer n sufficiently large, the interval (n2, n2 + n)
contains a zero-run of the r2 representation of length at least uε(n).

Proof. Take x = n/3 in Theorem 9.1. Then for relevant M and a, the
position

n2 + (a+ 1 +M − (n2 mod M)) ≤ n2 + 2n/3
is the start of a zero-run of length uε(n/3) ∼ uε(n), which run for sufficiently
large n is contained in (n2, n2 + n). �

We are now in a position to use representation bounds and the zero-run
bound of Theorem 9.1, to establish

Theorem 9.3. The number z =
∑

n≥0 1/2n2
is not a quadratic irrational.

Proof. We shall focus on the number z′ =
∑

n∈Z 1/2n2
whence the result

will follow for z. Assume that

A2z
′2 +A1z

′ +A0 = 0,

Consider the interval [n4, (n2 + 1)2] and within that, positions

n4, n4 + f, n4 + f + Z, n4 + n2, (n2 + 1)2.

By Corollary 9.2, for sufficiently large n, these positions are in order, with
a zero-run length Z = buε(n2)c, so that (r2(n4 + f +1), . . . , r2(n4 + f +Z))
is a length-Z zero-vector. Note also that r1(n4) = r1((n2 + 1)2) = 1, yet
every other r1 in the entire interval is zero. Thus

T (z′, n4 + n2 − 1) ≥ 1
2
− |A1|

2n2 > 0.

Thus any tail T (z′, n4), . . . , T (z′, n4 + n2 − 1) is positive. However, using
the upper bound on r2(n) to bound the tail component T2(z′, n4 + f), we
get

T (z′, n4 + f) ≤ 2A2

2Z
2(2+4ε) log n/ log log n +

|A1|
22n2−f

.

Since Z has the
√

log log n denominator, we have for sufficiently large n

0 < T (z′, n4 + f) < 1,

a contradiction. �

We now state the following result, which was first suggested to us by nu-
merical computation.
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Theorem 9.4. Almost all bits of z2 are 0’s; in fact the 1’s-count has
asymptotic behavior

#(z2, N) ∼ C0
N√
logN

,

for an absolute constant C0 ≈ 0.7996 . . . (we give a formula for C0 in the
proof).

Clearly, Theorem 9.4 implies that z2 is irrational (because of arbitrarily long
zero-runs), and Theorem 9.3 may well follow also from the asymptotic 1’s
density (although see Section 11). Incidentally the asymptotic density also
holds for z′2, as follows from a slight modification (actually simplification)
of the proof. In spite of the paucity of 1’s for these squared numbers, higher
powers such as z3, z4 are likely 2-normal. Indeed, all such higher powers
will involve interfering carries. For example, it is known that r3(n) > 0
for a limiting fraction 5/6 of all n (see [15]), so the carry problem for z3 is
already formidable.

The proof of Theorem 9.4 is based on the following two lemmas.

Lemma 9.5. There is an absolute constant c such that for any integers
N,B ≥ 2, the number of integers n ≤ N with r2(z, n) > 0 and r2(z,m) > 0
for some integer m with 0 < |n−m| < B is at most cBN/ logN .

Lemma 9.6. For any positive integers B,N , the number of integers n ≤ N
with r2(z, n) ≥ B is at most (

√
N + 1)2/B.

Note that Lemma 9.6 is very easy. The assertion follows instantly from
the inequality

∑
n≤N r2(z, n) ≤ (

√
N + 1)2. We postpone the proof of

Lemma 9.5 until later. First we see how Theorem 9.4 follows from the
lemmas.

Proof. (Theorem 9.4.) Let b(m) = #(m, 0) denote the number of 1’s in
the binary representation of the nonnegative integer m, and let b(0) = 0.
It follows from Theorem 4.2 and the fact that r2(z, n) ≤ no(1) that for N
large,

#(z2, N) ≤
∑

n≤N+log N

b(r2(z, n)).

The goal is to get a similar-looking lower bound. Let SN denote the set of
natural numbers n ≤ N such that n is not a square and

r2(z, n) > 0,
r2(z,m) = 0 for 0 < |n−m| < 3 lg lgN,
r2(z,m) < (lgN)2 for |n−m| < 2 lgN.
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Note that if n ∈ SN and N is sufficiently large then

(4)
∑
m>n

r2(z,m)
2m

<
1
2n
.

Indeed, we first note that∑
m≥n+2 lg N

r2(z,m)
2m

<
∑

m≥n+2 lg N

m

2m
= O

(
1

N2n

)
.

Next note that∑
n+2 lg N>m>n

r2(z,m)
2m

=
∑

n+2 lg N>m≥n+3 lg lg N

r2(z,m)
2m

≤
∑

n+2 lg N>m≥n+3 lg lg N

(lgN)2

2m

= O

(
1

2n lgN

)
.

Thus, we have (4). Further, for n ∈ SN and N large we have∑
m≥n

r2(z,m)
2m

<
r2(z, n) + 1

2n
<

(lgN)2 + 1
2n

<
1

2n′ ,

where n′ < n is the largest number with r2(z, n′) > 0. We conclude from
these estimates that appearing in the bit stream for z2 we see intact all of
the bits of the numbers r2(z, n) for n ∈ SN , when N is large. Thus, we
have for large N that

#(z2, N) ≥
∑

n∈SN

b(r2(z, n)).

It follows from the lemmas that the number of integers n ≤ N with
r2(z, n) > 0 that are not in SN is O(N log logN/ logN). The number of
1-bits contributed to #(z2, N) from n ≤ N with n 6∈ SN and r2(z, n) <
2(log N)1/4

is at most

O

(
(logN)1/4N log logN

logN

)
= o

(
N√
logN

)
.

And, by Lemma 9.6 there are at most O(N/2(log N)1/4
) values of n ≤ N

with r2(z, n) > 2(log N)1/4
. Since b(r2(z, n)) = o(log n), the contribution of

these values of n to #(z2, N) is also o(N/
√

logN). It follows that

#(z2, N) =
∑
n≤N

b(r2(z, n)) + o(N/
√

logN).
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Using the identity z′2 = 4z2 − 4z + 1 and that r2(n) = 4r2(z, n) when n
is not a square, and r2(n) = 4r2(z, n)− 4 ≥ 0 when n is a positive square,
we further see that

#(z2, N) =
∑
n≤N

b(r2(n)) + o(N/
√

logN).

Hence it is sufficient to estimate this last sum.
Suppose n = n1n2n3 where ni is the largest divisor of n composed of

primes that are congruent to i (mod 4). We have r2(n) > 0 if and only
if n3 is a square. And if n3 is a square, then r2(n)/4 = d(n1), where d is
the standard divisor function. It follows that if n3 is a square and if g(n)
denotes the largest squarefull divisor of n1 then r2(n)/d(g(n)) is a power
of 2, so that

b(r2(n)) = b(d(g(n))).

Incidentally by squarefull is meant an integer none of whose prime factors
appears to the power 1.

We now count the number Tg(N) of integers n ≤ N with r2(n) > 0 and
such that g(n) = g, where g is a given squarefull integer all of whose primes
are congruent to 1 (mod 4). It is not too difficult to see that

Tg(N) ∼ L
N√
logN

α

g

∏
p|g

(
1− 1

p

) (
1− 1

p2

)−1

,

where

α =
∏

p≡ 1mod 4

(
1− 1

p2

)
=

16L2

π2
,

and where p in these formulae runs over primes. Letting ψ(g) = g
∏

p|g(1+
1/p), we thus have that

Tg(N) ∼ 16L3

π2

N

ψ(g)
√

logN
.

Hence, we have Theorem 9.4 with

C0 =
16L3

π2

∑
g

b(d(g))
ψ(g)

,

where g runs over the squarefull integers divisible solely by primes that
are congruent to 1 (mod 4). Note that this sum is convergent, which
convergence partially justifies the adding of the asymptotic relations for
Tg(N). �

We do not give a proof of the asymptotic relations for Tg(N), but these
can be achieved as corollaries of the Landau asymptotic formula. In Section
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10 we give numerical verification of Theorem 9.4. We close the present
section with a proof of Lemma 9.5.

Proof. (Lemma 9.5.) Let r′(n) denote the number of coprime representa-
tions of n as the sum of two squares. First we count the number of integers
n ≤ N for which r′(n) > 0 and for which r′(m) > 0 for some integer m with
0 < |n−m| < B. Note that for r′(m) to be positive it is necessary that m
is not divisible by any prime congruent to 3 (mod 4), that is, that m3 = 1.
(This condition is almost sufficient: to make it sufficient it should also be
the case that m2, the 2-power in m, is not a power of 4.) For a given integer
k > 0, the number of integers n ≤ N with both r′(n) > 0, r′(n+ k) > 0 is,
by Theorem 2.3 in [16], at most

c′ψ(k)
N

logN
,

where c′ is an absolute constant and where ψ is defined in the proof of
Theorem 9.4. (Actually one can have the smaller factor ψ(d3), but this is
unimportant.) Since ∑

k≤B

ψ(k) = O(B),

as is easily seen by elementary methods (see [17], Ch. 18), it follows that
the number of n ≤ N with r′(n) > 0, r′(n+ k) > 0 for some integer k with
0 < |k| < B is O(BN/ logN). This proves the lemma for the function r′.
To get it for r2(z, n) we generalize the above proof for the case u2|n, v2|n+k,
where uv is divisible only by primes that are congruent to 3 (mod 4) and
where r′(n/u2) > 0, r′((n+ k)/v2) > 0. For any fixed choice for u, v we get
an estimate of O(ψ(k)N/(u2v2 logN)) for the number of such n ≤ N . Now
we sum over k, u, v getting the lemma. �

10. Numerical experiments for C0

The intricacies of the borderline number z and its powers show that
global bit-density arguments alone are insufficient to handle low 1’s-density
cases: We required number theory to focus on certain details of the bit
pattern. Later in the research, we found that computational aspects—such
as bit-counting—for z2 are nontrivial. In attempts to verify Theorem 9.4
empirically—in particular, to justify the value of C0—the present authors
were met with considerable computational consternation. There are two
basic difficulties that need be overcome. Note that calculation of C0 from
the sum formula is not too hard, and gives us the cited 0.7996 . . . value
that we obtained by summing over squarefull g ≤ 105, 106, 107 in succes-
sion, then extrapolating on the assumption of a reasonable form for the
series-truncation error. The remaining difficulties all pertain to the actual
counting of representations up through some large n.



Binary expansions 27

The first difficulty is that the Landau asymptotic formula is, for all prac-
tical purposes, generally below the mark, in the sense that a more accurate
formula, also due to Landau, is [23]∑

n≤N

H(r2(n)) = L
N√
logN

(
1 +

C1

logN

)
+ o

(
N

(logN)3/2

)
,

where C1 = 0.5819 . . . is yet another constant. One might also use the
Ramanujan form [18] ∑

n≤N

H(r2(n)) ∼ L

∫ N

0

dx√
log x

which is reminscent of the logarithmic integral Li(x) which, as is well known,
stands as a better approximation to π(x) than the classic x/ log x. Remark-
ably, for the original Landau expression LN/

√
logN to be accurate to say 1

per cent of an empirical count of representables, one has to go up to about
N = e50 ≈ 1022, or about a mole of bits. That is more than the digital
storage presently available on the entire planet.

The second computational difficulty is that the proof of Theorem 9.4
basically tells us that most r2 values eventually “separate” so that car-
ries do not interfere. When does separation become significant? A very
rough heuristic runs as follows. For very large N the mean separation be-
tween positive representation counts is about

√
logN/L, and this should

be greater than the base-2 logarithm of the largest r2 values of the region.
So, and again this is quite heuristic, for significant separation we should
have √

logN
log logN

≈ 2
L
,

which leads to the estimate of N ≈ 1080 bits, which is an oft-quoted esti-
mate on the number of protons in the visible universe.

So these difficulties required the authors to calculate entities that con-
verge to reasonable values for N well below the aforementioned astronom-
ical thresholds. It turns out that the quantity

C(N) = L

∑
n≤N b(r2(n))∑
n≤N H(r2(n))

∼ C0

is relatively well-behaved, and gives an excellent empirical value for C0

(although, still, N has to be taken painfully far and extrapolation tech-
niques were required when our machinery reached its limit, as described
below). Notice that this quantity C(N) essentially measures—up to the
L factor—the number of bits per positive representation. The numerical
results reported below suggest (and Theorem 9.4 implies) an amusing prin-
ciple: The average number of bits in a positive representation count r2(n)
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is about C0/L = 1.05. That is, it is a very good bet that a random positive
r2 value is a power of 2.

In order to calculate entities for n up to and beyond say 108, we employed
a sieving expedient described in [11] for rapidly obtaining long strings of
representation counts. The algorithm is quite simple:

(1) Create N + 1 bins, say B[0], . . . , B[N ] intended to hold representation
counts,

then set B[0] = 1 and zero all other bins.

(2) for(odd d ≤ N) {
if(d ≡ 1 mod 4) add 4 to every B[kd] with kd ≤ N ;

else subtract 4 from every B[kd] with kd ≤ N ;
}

The result of this algorithm is that r2(n) is sitting in bin B[n] for every
n ∈ [0, N ]. In the following table we denote by

∑
r2 the sum of counts r2(n)

through n = N , by
∑
H the count of representables, by c2 the number of

r2(n) being a power-of-two, and by
∑
b the sum of all bit counts b(r2(n)):

N LN/
√

log N
∑

H
∑

r2 c2

∑
b #(z2, N) C(N)

106 205605.6 216342 3141552 204082 228646 213480 0.807683
107 1903573.9 1985460 31416028 1877532 2093748 1968680 0.805901
108 17805966.8 18457848 314159056 17482500 19436147 18353248 0.804725

Note the following interesting features of this table. The 1st-order Landau
estimate (2nd column) indeed lags behind the representation count

∑
H.

Next, the similarity of
∑
r2 and the decimal digits of π is, of course, not

a coincidence: The celebrated Gauss circle problem starts with the proven
estimate

∑
r2 = πN + o(N), whence one focuses attention on the little-o

term. Thus the present sieve technique for counting representations might
be useful in numerical studies of the circle error. We see that indeed all
but a few per cent of representables are a power-of-two (i.e., c2 is close to∑
H). We stress that the #(z2, N) column comes from processing of the

r2 with carry. Actually, rather than work out the carry chain for the B[ ]
bins, we instead obtained the # column by simply squaring high-precision
z values. For both sheer arithmetic of that sort, or for our divisor-sieve,
our machinery was not able to go up to N = 109. Incidentally this is not
because of CPU power—the sieve is quite fast, as are convolution methods
of squaring reals—the problem is memory. Thus we are forced to extrapo-
late from the last column of data. Under Romberg extrapolation and the
assumption of exponential approach, we estimate the final column’s limit
to be about 0.802. This extrapolation is within 0.3 per cent of the theo-
retical C0 = 0.7996 . . . and so we deem this numerical exercise successful.
We should also mention that the C(N) results, when other N values are
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included in a larger table, are remarkably smooth, which in itself suggests
the validity of extrapolation.

11. Open problems

Finally, we state some open problems:
• Is there a quantifiable sense in which the binary representation of√

2 is not truly random? That is, we observe using the present
techniques, that the representation list (r2(

√
2, 0), . . . , r2(

√
2, N)) for

large N cannot have any zero-run of more than 2 lgN consecutive
zeros. Evidently this is a hard constraint that one would not want to
put on the representation sequence for a “truly random” bit genera-
tor.

• As for the Fibonacci binary X of Corollary 8.2, what is the 1’s density
of X2?

• What can be said about Fourier representations and bit densities?
For example, for x =

√
2 the simple fact of x2 = 2 can be recast as

2 =
∫ 1

0

 ∑
p∈P(x)

e2πipt

2λp

2

dt

1− 2λ−1e−2πit
,

where λ ∈ (0, 1) is a free parameter, and in principle such an in-
tegral representation should convey some information about the 1’s
positions p in the expansion of

√
2.

• For bases b > 2 there is the difficulty of having more than two possible
digits. What kinds of bounds might be placed on counts of 1’s and
2’s for ternary expansions of algebraic numbers?

• We have mentioned that the nonquadratic-irrationality Theorem 9.3
may well follow from the density Theorem 9.4. But there is an im-
passe which would have to be overcome. Namely, it turns out that,
whereas #(z,N) ∼

√
N , there exist reals y with much greater than

the square-root 1’s density but such that still we have #(z+ y,N) ∼√
N . That is, adding y to z does not improve the 1’s count. To see

this, define

y =
∑
n>1

2kn − 1
2n2

with arbitrary positive integers kn except for the constraint kn <
2n − 1. When z is added to such a y, the sets of kn 1’s are each
obliterated by carry. This is an impasse because one cannot just infer
the 1’s density of Az2+Bz merely by observing that the (rather high)
density in Theorem 9.4 dominates the

√
N density.

• The C0 constant of Theorem 9.4 we have estimated as 0.7996 . . . . A
fast algorithm for calculating the Landau constant L itself is given
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in [14]. (In doing so, they effectively solved research Problem 1.88 of
[10], which asks for a fast method.) Might there be a similar, fast
construction for C0?

• In recent times has emerged the field of “experimental mathematics,”
wherein one uses high-precision numerical relations such as linear
reduction to suggest exact algebraic identities, in this way igniting
a profusion of new results and theorems. One might say that the
results of the present paper amount to a kind of “digitally motivated
analysis” (we might abbreviate DMA), in which computers were not
used (except to check various claims), yet results in the analysis field
are obtained by thinking digitally, in our case thinking in binary.
(And, we acknowledge the historical foreshadowing of “DMA”, as in
[24, 20, 34, 25].) A question, then, would be: What other aspects
of analysis apart from transcendency might succumb to the “DMA”
approach?
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[7] É. Borel, Oeuvres d’É. Borel, Vol. 2, Éditions du CNRS, Paris, 1972, 1203-1204.
[8] Peter Borwein, “On the Irrationality of Certain Series,” Mathematical Proceedings of the

Cambridge Philosophical Society, vol. 112 (1992), pp. 141–146.

[9] D. G. Champernowne, “The Construction of Decimals Normal in the Scale of Ten,” Journal
of the London Mathematical Society, vol. 8 (1933), pg. 254-260.

[10] R. Crandall and C. Pomerance, Prime Numbers: A Computational Perspective, Springer-

Verlag, New York, 2002.
[11] R. Crandall and S. Wagon, “Sums of squares: computational aspects,” manuscript, 2002.



Binary expansions 31

[12] D. Duverney, Keiji. Nishioka, Kumiko Nishioka, and I. Shiokawa, “Transcendence of Jacobi’s

theta series and related results,” pp. 157–168, in Number Theory. Diophantine, Computa-
tional and Algebraic Aspects, Kálmän Yöry (ed.) et al. , Walter de Gruyter, Berlin, 1998.
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