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Jonathan M. Borwein unexpectedly died on 2 August 2016, in London, Ontario, Canada, where he
had been visiting on leave from home institution, the University of Newcastle, Australia.

Since his death, the present author and Nelson H. F. Beebe of the University of Utah have been
collecting Borwein’s many published papers, books, reports and talks, as well as a number of articles
written by others (such as book reviews) about Jon and his work. Our current catalog (available at
http://www.jonborwein.org/jmbpapers/) lists 1745 items, and the list is certain to grow further. This
includes over 500 published books, journal articles and refereed conference papers, a prodigious output
for any scholar and especially for a research mathematician. And in an era when many mathematicians
focus on a single specialty or subspecialty, Borwein did significant research in a wide range of fields,
ranging from analytic number theory and optimization to biomedical imaging, mathematical finance and,
especially, experimental mathematics, where he was arguably the world’s leader.

1 Pi: A personal remembrance

I confess that I personally became involved in experimental mathematics as a direct result of working
with Jonathan Borwein. This stems back to 1984, when I happened to read an article by Jonathan and
his brother Peter on how the arithmetic-geometric mean could be utilized to rapidly compute 7 and the
elementary functions [10]. Intrigued by these formulas, I contacted Jonathan and Peter, who sent me
some additional formulas for m [12, 13], which I then implemented as part of a test suite for a Cray-2
supercomputer that NASA had just acquired.

One of their formulas is the following: Set ag =6 — 4\/5, Yo = V2 — 1, and
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for k > 0. Then aj converge quartically to 1/m: each iteration approximately quadruples the number of
correct digits, provided all iterations are performed to at least the precision required for the result.

In the end, Jonathan, Peter and I co-authored a paper presenting several of these formulas in the
historical context of Ramanujan’s writings, together with details on how they could be implemented on a
computer and what insight one could derive from the results [13]. As a result of this collaboration, I was
hooked on experimental mathematics, and have worked in this area, mostly with Jon, ever since. I have
since learned that numerous other mathematicians similarly became hooked on experimental mathematics
after being introduced to the subject by Jon. He was a masterful salesman for the field.
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Figure 1: Credit: Australian Academy of Science



2 Ramanujan continued fractions

One good example that is illustrative of the experimental methodology that Jon was so fond of can be
seen in a pair of papers he wrote with Richard Crandall (who died in December 2012) and Greg Fee on
“Ramanujan continued fractions.” Given a,b,n > 0, define
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This continued fraction arises in Ramanujan’s Notebooks. Ramanujan discovered the beautiful fact that
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Jon had originally wished to record this particular formula in our book Mathematics by Experiment [8],
but he first wished to computationally check it for validity. An initial attempt to numerically compute
Ry (1,1) failed miserably, but with some effort three reliable digits were obtained: 0.693- - -, suggesting
that this might be log 2. In hindsight, these computations were hindered by the fact that convergence of
the fraction is slowest in the simplest case, namely when a = b, as in this example.
Nonetheless, it did turn out to be true that Ry (1,1) = log2, as a special case of the following line of
reasoning. From formula (1.11.70) of [9], one can show that for 0 < b < a,
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where k = b/a = 03/6%, k' = /1 — k2, K is a complete elliptic integral of the first kind, and 6y, 03 are
Jacobian theta functions.
Writing the previous equation as a Riemann sum, one finds that
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where the final equality follows from the Cauchy-Lindelof Theorem. This sum may also be written as

R(a) = 22 F (% + %, ; i + %; —1), from which Maple or Mathematica can be used to compute

1+a
R(2) = 0.974990988798722096719900334529 . . . .

This constant, as written, is difficult to recognize, but if one first divides by v/2, one can discover, using
the Inverse Symbolic Calculator-2 (https://isc.carma.newcastle.edu.au, an online tool that Jon was
instrumental in producing and deploying), that the quotient is /2 — log(1 4+ v/2). In other words,

R(2) = V2 [W/2 ~log(1 + \/5)] .
From this specific experimental evaluation, Borwein, Crandall and Fee were led to conjecture and then
prove the general formula
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from which it trivially follows that R(1) = log2. See [14, 15, 9] for additional details.



3 Ising integrals

Another good illustration of Jon’s experimental methodology in action was his analysis (in conjunction
with Richard Crandall and myself) [2] of the following three classes of integrals that arise in mathematical
physics: C), are connected to quantum field theory, D,, arise in Ising theory, while the F,, integrands are
derived from D,,:
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where in the last line uy, = t1ta - - - ts.
One early observation was that the C),, integrals can be converted to one-dimensional integrals involv-
ing the modified Bessel function Ky(t):
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Upon computing high-precision numerical values of these integrals, using the tanh-sinh quadrature algo-
rithm [1], it quickly became apparent that these values approach a limit. For example:

C1024 = 0.6304735033743867961220401927108789043545870787 . ...
The online Inverse Symbolic Calculator-2, mentioned above, quickly identified this value as
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where v denotes Euler’s constant, a result which was then proved.

Subsequently we utilized high-precision computations (which in some cases required a highly parallel
supercomputer), in conjunction with Ferguson’s PSLQ algorithm [17, 6], to find experimental evaluations
of other specific instances of these integrals, including:
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where L_5(2) is a Dirichlet L-function constant, ¢(z) is the Riemann zeta function and Li,(x) is the
polylogarithm function. The formula for Es, which was initially found by Borwein (and which he was
quite proud of), remained a numerically discovered but open conjecture for several years, but was finally
proven in 2014 by Erik Panzer [18]. Resolution of the general case is still open.



4 Algebraic numbers in Poisson potential functions

One final example that we will mention here arose when Richard Crandall, who was studying lattice sums
associated with the Poisson equation, in connection with a technique to sharpen photographic images,
brought to Jon’s attention the sums
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After extensive analysis and numerical experimentation [3, 4, 5], Jon and Richard, later including myself
and Jon Zucker, discovered the intriguing fact that when z and y are rational,
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where A is an algebraic number that depends on the particular values of x and y.
A key breakthrough here, due to Jon, was to observe that the ¢5(z,y) function could be numerically
computed much more rapidly as follows [3]:
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where ¢ = e™™ and z = Z(y + iz). The four theta functions in turn can be computed as [11, p. 52
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In our experiments using these formulas, we computed a = A% = exp(87¢2(z,y)) for various specific
rationals z and y. Then we generated the vector (1, a, a2, - - - ,ad) as input to a program implementing the
three-level multipair PSLQ program [17, 6]. When successful, the program returned the vector of integer
coefficients (ag, a1, as, -+ ,aq) of a polynomial satisfied by « as output. With some experimentation on
the degree d, and after symbolic verification using Mathematica, we were able to ensure that the resulting
polynomial is in fact the minimal polynomial satisfied by «. Table 1 shows some examples of these
computational results [3].

After these results were first obtained, Jason Kimberley, a graduate student at the University of
Newcastle, Australia, observed that the degree m(s) of the minimal polynomial associated with the case
x =y = 1/s appears to be given by the following formula. Set m(2) = 1/2. Otherwise for primes
p congruent to 1 modulo 4, set m(p) = (p — 1)?/4, and for primes p congruent to 3 modulo 4, set
m(p) = (p? — 1)/4. Then for any other positive integer s whose prime factorization is s = p'p5? - - - pSr,

m(s) = 4" i mps). 2)
=1



Minimal polynomial corresponding to © =y = 1/s:

14 52a — 2602 — 1202 + o

1 — 28a + 602 — 2802 + o

—1 — 196 + 130202 — 14756a° + 15673a* + 42168a° — 111916a° + 8226407
—3523108 4+ 1985202 — 2954010 — 308a!! 4 712

1 —88a + 9202 — 87202 4+ 19900* — 872a° 4+ 9208 — 8807 + o®

—1 — 534 + 1092302 — 3428640° + 2304684a* — 7820712a° + 1372906800
—22321584a7 4+ 3977598608 — 444310440° + 19899882010 + 354657611
—8458020c¢!2 + 400917603 — 273348 + 121392a/1°

—11385a6 — 34207 + 318

10 1 —216c + 86002 — 7440 + 454a* — 7440° + 8600 — 216a” + o
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Table 1: Sample of polynomials produced in earlier study [3].

This sequence now appears as http://oeis.org/A218147 in the Online Encyclopedia of Integer Se-
quences. Does Kimberley’s formula hold for any or all higher s?

We then explored these polynomials using significantly more powerful computational tools, including
a new, more advanced high-precision computation package, a new three-level multipair PSLQ program,
and an implementation on a parallel computer system [5]. With this improved capability (more than 150
times faster than before), we confirmed that Kimberley’s formula holds for all integers s up to 52, except
for a handful that were too expensive to test, and also for s = 60 and s = 64. These computations were
very challenging, requiring up to 64,000-digit precision, producing polynomials with degrees up to 512
and integer coefficients up to 10%2°.

By examining the computed results, and, quite literally, doing Google searches on some of the resulting
polynomial coefficients, we found connections to a sequence of polynomials defined in a 2010 paper by
Savin and Quarfoot [19]. These investigations subsequently led to a proof, by Watson Ladd of the
University of California, Berkeley, of Kimberley’s formula and also the fact that when s is even, the
corresponding polynomial is palindromic [5].

Needless to say, Jon was very pleased with this most satisfying conclusion to a problem that initially
appeared to be intractable. Sadly, he died before the paper documenting these results appeared in
Ezperimental Mathematics [5].

5 Conclusion

Jonathan Borwein’s leadership and prodigious output in experimental mathematics (and also in opti-
mization) is a singular contribution to modern mathematics. Among other things, his devoted service as
an editor for Experimental Mathematics will be sorely missed.

But beyond his technical accomplishments, he was a master of mathematical communication, mathe-
matical education, and in promoting science, mathematics and computing to the general public. To this
end, Jon wrote and lectured tirelessly. By one reckoning he presented an average of one lecture per week
for decades, and wrote over 100 articles targeted to the general public. His death is a loss to all those
who treasure modern mathematics, science and clear thinking.
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