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Abstract

For decades, computer scientists have sought guidance on how to evolve architectures, languages, and pro-
gramming models in order to improve application performance, efficiency, and productivity. Unfortunately,
without overarching advice about future directions in these areas, individual guidance is inferred from the ex-
isting software/hardware ecosystem, and each discipline often conducts their research independently assuming
all other technologies remain fixed. In today’s rapidly evolving world of on-chip parallelism, isolated and itera-
tive improvements to performance may miss superior solutions in the same way gradient descent optimization
techniques may get stuck in local minima. To combat this, we present TORCH: A Testbed for Optimization
ResearCH. These computational reference kernels define the core problems of interest in scientific computing
without mandating a specific language, algorithm, programming model, or implementation. To compliment the
kernel (problem) definitions, we provide a set of algorithmically-expressed verification tests that can be used
to verify a hardware/software co-designed solution produces an acceptable answer. Finally, to provide some
illumination as to how researchers have implemented solutions to these problems in the past, we provide a set
of reference implementations in C and MATLAB.



Chapter 1

Introduction

For decades, computer scientists have sought guidance on how to evolve architectures, languages, and program-
ming models in order to improve application performance, efficiency, and productivity. Unfortunately, without
overarching advice about future directions in these areas, individual guidance is inferred from the existing soft-
ware/hardware ecosystem, and each discipline often conducts their research independently assuming all other
technologies remain fixed. Architects attempt to provide micro-architectural solutions to improve performance
on fixed binaries. Researchers tweak compilers to improve code generation for existing architectures and imple-
mentations, and they may invent new programming models for fixed processor and memory architectures and
computational algorithms. In today’s rapidly evolving world of on-chip parallelism, these isolated and itera-
tive improvements to performance may miss superior solutions in the same way gradient descent optimization
techniques may get stuck in local minima.

To combat this tunnel vision, previous work set forth a broad categorization of numerical methods of interest
to the scientific computing community (the seven Dwarfs) and subsequently for the larger parallel computing
community in general (13 motifs), suggesting that these were the problems of interest that researchers should
focus on [8, 9, 42]. Unfortunately, such broad brush strokes often miss the nuances seen in individual kernels that
may be similarly categorized. For example, the computational requirements of particle methods vary greatly
between the naive but more accurate direct calculations and the particle-mesh and particle-tree codes.

In this report, we present an alternate methodology for testbed creation. For simplicity we restricted our
domain to scientific computing. The result, TORCH: A Testbed for Optimization ResearCH, defines a broad
set of computational problems, verification, and example implementations. Superficially, TORCH is reminiscent
of the computational kernels in Intel’s RMS work [53]. However, we proceed in a more regimented effort. In this
introductory chapter, we commence by defining the key components of our testbed, and proceed by enumerating
the kernels within our testbed. By no means is the list of problems complete. Rather, it constitutes a sufficiently
broad yet tractable set for initial investigation. The remaining chapters of this report provide a prose description
of the kernels in the accompanying source distribution as well as an introduction to each motif.

1.1 An Evolved Testbed

For a testbed to have long-term and far-reaching value, it must be free and agnostic of existing software,
hardware, and algorithms developed and tuned for them. Today, the underlying semantics of memory and
instruction set architecture leech through into benchmarks and limit the ability for researchers to engage in
truly novel directions. Languages and programming models should not expose the details of an architectural
implementation to programmers, but rather allow the most natural expression of an algorithm. When operating
on shared vectors, matrices, or grids, the dogmatic load-store random access memory semantics may be very
natural and efficient. However, when operating on shared sets, queues, graphs, and trees, programmers are
often forced to create their own representations built on an underlying linear random access memory using
loads, stores, and semaphores. This should not be.

To ensure we did not fall prey to the tunnel vision optimization problem, we made several mandates on
our evolved testbed. To that end, we strived to stay away from the conventional wisdom that suggests that
parallelization and optimization of an existing software implementation is the challenging problem to be solved.
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Table 1.1: Fields of research enabled by different styles of benchmarks

Rather we believe the starting point is not code, but a problem definition expressed in the most natural language
for its field. The Sort benchmark collection [94] initiated by Gray exemplifies the future vision for our reference
kernel testbed. The sort benchmark definitions are based on a well-defined problem, include a scalable input
generator, multiple metrics for assessing quality (for instance, sort rate for a terabyte-sized dataset, amount of
data that can be sorted in a minute or less, records sorted per joule, and so on), and finally a verification scheme.
Framing the benchmark objectives as an open challenge, rather than providing an optimized implementation of
a particular approach, has led to novel algorithmic research and innovative engineered sort routines.

We believe similar results can be attained in other fields. For example, consider Table 1.1. When testbeds
are based on a fixed binary, divorced of the original representation or mathematical problem, very little can be
done to improve performance. In fact, similar scenarios drove rapid advances in microarchitecture, but led to a
(energy inefficient) local minimum as they alone could never make the jump to multicore architectures. As one
proceeds to more and more abstract representations of a problem, more and more researchers can be included in
the co-design research effort. As such, we believe any and all of the listed fields of research working on parallel
computing could benefit from the initial testbed enumerated in the report.

Although this argument may sound vague, we found the textbook taxonomy to describe problems illustrative.
The “solution” is the efficient co-design of software and hardware to implement a “problem” described in a
domain-specific mathematical language (e.g. numerical linear algebra, particle physics, spectral analysis, sorting,
etc.). The veracity of the solution is determined via an accompanying verification methodology specified in the
same domain-specific mathematical language. We may provide “hints” to the solution in the form of reference
and optimized implementations using existing languages, programming models, or hardware. The quality of the
solution is based on the performance, energy, cost (amortized by reuse), and designer productivity.

In the following sections, we will describe and illustrate this process of problem definition, scalable input
creation, verification, and implementation of reference codes for the scientific computing domain. Table 1.3
enumerates and describes the level of support we’ve developed for each kernel. We group these important kernels
using the Berkeley Dwarfs/Motifs taxonomy using a red box in the appropriate column. As kernels become
progressively complex, they build upon other, simpler computational methods. We note this dependency via
orange boxes. We must reiterate that by no means is our list comprehensive. For example, the finite difference
methods listed in the structured grid section are easily understood and representative, but are often replaced by
more complex methods (e.g. the finite volume and lattice Boltzmann methods) and solver acceleration techniques
(multigrid, adaptive mesh refinement).

1.1.1 Problem Specification

We create a domain-appropriate high-level definition for each important kernel. To ensure future endeavors are
not tainted by existing implementations, we specified the problem definition to be independent of both computer
architecture and existing programming languages, models, and data types.

For example, numerical linear algebra has a well developed lexicon of operands (scalars, vectors, matrices,



etc.) and operators (addition, multiplication, transpose, inverse, etc.). Although programmers are now ac-
customed to mapping such structures to the array-like data structures arising from the linear random access
memories in computer architecture, such an end state is the product of decades of focused optimization of
hardware and software. It is not an inherent characteristic or mandate in the problem definition.

Conversely, graph algorithms are often defined as operating on edges and vertices via set and queue oper-
ations. Programmers are often forced to map such operands and operators onto architectures optimized for
linear algebra. Although such techniques have sufficed in the single-core era, parallelization of set and queue
operations on shared random access memories via kludges like atomic operations is unnatural and error prone.
By taking a step back to a high-level problem definition, we hope designers may free themselves of their tunnel
vision and build truly novel systems adept at such computations.

Whenever possible, we specify the high-level parallel operations (for all, sum, etc.) to be independent of
whether or not such constructs will create data dependencies when mapped to existing languages or instruction
set architectures. This ensures we neither restrict nor recast parallelism. Moreover, we minimize the expression
of user-managed synchronization in the problem specification.

1.1.2 Scalability

The last decade has not only seen an order-of-magnitude increase in inter-node parallelism, but also a more
challenging explosion in intra-node parallelism via SIMD, hardware multithreading, and multiple cores. This ever
increasing parallelism constrains the fixed problem size benchmarks into a strong scaling regime. Although this
might be appropriate for some domains, it is rarely appropriate in the field of scientific computing where weak
scaling has been used to solve problems at petascale. Similarly, such a constraint may drive designers to solutions
that, although they may be quite appropriate for the benchmark, are utterly unscalable and inappropriate for
future problem sizes.

To that end, for each kernel, we have created a scalable problem generator. In some cases this generator
may be nothing more than a means of specifying problems using the underlying method’s high-level description
language. In other cases, code is written to create input datasets. In either case, the problem size is independent
of implementation or mapping to architecture.

In the linear algebra world, inspired by the Linear Algebra working note [50], we generate randomized
matrices for LU and QR on the fly. We apply similar techniques in the spectral problems by specifying the FFT
input size, but randomizing initial values. The n-Body computations can be scaled simply by increasing the
number of particles, and the computational challenges seen in the particle-tree codes can be altered by changing
the spatial layout of particles and forces used.

Unfortunately, scalable problem generation can be challenging for kernels in which the problem configuration
or connectivity is specified in the data structure. Often, sparse linear algebra research has been focused on fixed
size matrices that have resided in collections for decades. We believe this tradition must be evolved into a form
like [60] so that repositories of scalable matrix generators exist. We acknowledge that this is not universally
applicable as some matrices are constructed from discrete real-world phenomena like connectivity of the web.
The sparse linear algebra chapter discusses this issue in more detail.

1.1.3 Solution Verification

One could view the high level problem definition as a means to verify the validity of a solution. In effect, one
can compare the results from two implementations (reference and hardware/software co-designed), checking for
discrepancies on a bit by bit granularity. Unfortunately, such an approach may not always be appropriate.
As problem size scales, execution of the reference implementation may not be feasible. Moreover, such a
verification regime assumes that implementation and verification code don’t contain a common error (matching,
but incorrect result). Finally, this approach assumes that there is one true solution. We wish to create a
verification methodology that is in some sense orthogonal to the problem definition.

In many cases, we construct problems whose solutions are known a priori or can be calculated with minimal
cost. We verify the symmetric eigensolver by constructing randomized matrices with known eigenvalues. To
obtain such a matrix, one forms a diagonal matrix D composed of the desired eigenvalues and a randomized
orthogonal matrix . The test matrix is the product QT DQ. This ‘reverse diagonalization’ produces a ran-
domized matrix with pre-determined eigenvalues, the eigenvalues of which can be selected to be as numerically



Complexity of Solving Poisson’s equation
on an n x n X n mesh with N = n? unknowns
Method Direct or Serial Serial Dwarf Section
Iterative | Complexity | Memory in this report
Dense Cholesky Direct N3 N? Dense LA 2.13
Band Cholesky Direct N7/3 N5/3 Band LA —
Jacobi Iterative N5/3 N Structured Grids 5.8
Gauss-Seidel Iterative N5/3 N Structured Grids —
Conj. Gradients | Iterative N*/3 N Structured Grids 5.9
Red/Black SOR | Iterative N4/3 N Structured Grids —
Sparse Cholesky Direct N2 N*/3 Sparse LA —
FFT Direct Nlog N N Spectral Methods 7.5
Multigrid Iterative N N Structured Grids 5.10
Lower Bound — N N — —

Table 1.2: Complexity of various algorithms for solving the 2D and 3D Poisson equation.

challenging or clustered as the user desires. Finite difference calculations are verified by evaluating a func-
tion (e.g. sin(xy)) both symbolically and via the finite difference method. Moreover, we may reuse the same
equations for all differential operators and PDEs whether the kernel is categorized within the structured grid,
sparse linear algebra, or spectral dwarfs. We may then compare the grid at a subset of the sampled points.
Similarly, the result of the Monte Carlo integration kernel can be compared to analytical or numerical results
in any dimension.

1.1.4 Solution Quality

The quality of a solution is multifaceted. Thus far, our group has primarily taken the rather narrow focus of
optimization of time or energy for a given fixed architecture. Unfortunately, given a set of programmers unrep-
resentative of the community as a whole (we pride ourselves in our knowledge of architecture and algorithms),
we likely minimize the programming and productivity challenges required to attain such performance. In the
end, the quality of a solution must take into account not only performance or energy, but must engage the
programmer community to determine how productive the solution is. Moreover, the solution must be evaluated
on its ability to integrate with existing software and hardware.

At a higher level problem definition, e.g. solve Poisson’s equation, one can evaluate the quality of a solution
relative to the lower bound. For example, let us consider Poisson’s equation with zero Dirichlet boundary
conditions, discretized by finite differences on a cubic n x n x n 3D mesh; see Table 1.2. In effect there are
N = n3 unknowns (one per grid point). A number of numerical methods discussed in this report can be used to
solve this system of N linear equations with N unknowns. If one selects a dense matrix representation, then he’s
created N-by-N matrix A has 6’s on the diagonal, -1’s on 6 off-diagonals, and 0 elsewhere [49]. Such a system
has computational complexity of O(N?) and is thus impractical for all but the simplest problems. Although
the sparse and structured grid representations require far less storage and computational complexity, we see
there are other algorithms that may reduce the computational complexity to the lower bound of O(N). When
designing a system, one may be limited by compute, storage, bandwidth or a relationship between them. As
such, selection of the appropriate algorithm is complex.

All these algorithms are of interest on problems sharing at least some of the structure of the Poisson equation;
for example if all one knows is that one has a symmetric positive definite band matrix of bandwidth N'/2 then
one could use band Cholesky and expect a complexity of N2. Only when exploiting all the structure of the
Poisson equation can an optimal (with multigrid) or near-optimal (with FFT) complexity algorithm be achieved.

1.1.5 Reference Implementation

To provide context as to how such kernels productively map to existing architectures, languages and program-
ming models, we have proceeded by attempting to produce a reference implementation for each kernel. As a



reminder, these should be viewed as “hints” designed to show how other designers have mapped a problem’s
operands and operators to existing hardware and software. Since we wanted such implementations to be il-
lustrative, we tried to ensure they were the most straightforward implementation in the easiest to understand
languages using familiar architectures. To that end, most of the kernels are written in both sequential C and
MATLAB using array indexing to process matrices, rather than one-line library calls to compute the same ker-
nel. This ensures that the kernel’s computation is explicit and readable in the implementation and not hidden
behind a library.

Unfortunately, MATLAB has limitations such as awkward facilities for graphs and tree programming, and
does not permit low-level control of computations. For these reasons, our reference implementations of kernels
such as the Barnes-Hut n-Body solver, the sorting kernels, and the graph algorithm kernels were written in pure
C without any supporting library computations.

1.1.6 Optimization Inspiration

There is a dramatic performance gap between the performance that can be attained via productive programming
(the most natural means of implementing the problem using existing languages, programming models and
hardware) and the style needed to elicit high performance. The discrepancy in performance should not be viewed
as the programmer’s failing. Rather, it should be viewed as a lighthouse for future research into architecture,
languages, and middleware.

There are decades of optimizations for each of the kernels we have enumerated. As such, it would be
wasteful to try and recreate all of them. In some cases like Dense Linear Algebra, Sparse Linear Algebra, and
Spectral Transforms, there are existing auto-tuned production libraries (ATLAS, OSKI, SPIRAL, FFTW) that
can be downloaded [58, 96, 101, 103]. In other cases, like structured grids, sparse linear algebra, and particle
methods, we have investigated performance optimization on multicore architectures [38, 48, 78, 104, 105].
Among these and other fields, there are many, many optimized implementations that can be used to guide
future implementations. Where appropriate, we list some of the known top-performing algorithmic strategies
and optimizations associated with each kernel.

1.2 Previous Work

A shorter version of this document without any details about specific kernels was previously published in [72].
An extended abstract of this paper was subsequently published in [97] by invitation.

1.3 Related Work

There is abundant prior work on defining micro-benchmarks (e.g. LINPACK [87] for peak floating-point per-
formance, pChase [86] for memory latency, STREAM [79] for memory bandwidth), benchmarks for evaluating
specific architectural and programming models (e.g. HPC Challenge [68] for MPI and distributed-memory sys-
tems, Parboil [85] and Rodinia [39] for GPUs and CUDA, PARSEC [29] for cache-based multicore, SPLASH [93]
for shared-memory systems, and STAMP [80] for transactional memory implementations), benchmarks that are
focused on a particular application-space (e.g. ALPBench [76] for multimedia applications, BioPerf [11] for
computational biology algorithms, Lonestar [74] for graph-theoretic and unstructured grid computations, NU-
MineBench [83] for data mining, PhysicsBench [107] for physics simulations, NAS Parallel benchmarks [17]
for scientific computing, and the HPCS SSCA benchmark suite [15] for Informatics applications), and large
benchmark consortia (e.g. SPEC [95] and EEMBC [55]). From our perspective, we view existing benchmarks as
reference implementations of one or more kernels (since the problem size, programming language, and algorithms
are typically fixed in the benchmark definition). In fact, the Rodinia and the Parallel Dwarfs project [84] teams
adopt the Berkeley 13-motif classification to describe the underlying computation in each of their benchmarks.

While all the aforementioned benchmarks serve the computing research community well, their typical usage
is to generate a single performance number corresponding to a benchmark-specific metric. Our intent with
creating the kernel reference testbed is to drive hardware-software co-design, leading to innovative solutions that
can be potentially applied across application domains. Hence we emphasize that our reference and optimized
implementations are only hints on how problems should be solved.



1.4 Remainder of this Report

The remainder of this report is organized as follows: Chapters 2 through 13 define kernels, group them by
motif, and discuss their key aspects. Table 1.3 summarizes these characteristics and the relationship between
kernel and motif. These sections provide the background for those wishing to fully understand the code in the
accompanying distribution of reference implementations. They also discuss how one might modify the reference
implementation to run larger problems. By no means should this set be construed as being complete, but
rather a core set of interesting problems. Similarly, the reference implementations should not be viewed as
efficient implementations, but rather a spring board for understanding how the core problem can succinctly be
implemented.

1.5 Future Work

This project attempts to address a very broad set of problems, yet the spectrum of scientific computing is
so wide that many more kernels remain. We have not implemented or decided on verification schemes for
other important structured grid methods including lattice Boltzmann, finite volume, and AMR. We have yet to
enumerate any concise representative kernels for unstructured grid methods. An implementation a Particle in
Cell (PIC) N-Body solver is planned; as is an implementation of the Fast Multipole Method (FMM).

Also, our kernel selection predominantly reflects scientific computing applications. There are numerous other
application domains within computing whose researchers should enumerate their own representative problems.
Some of the problems from other domains may be categorized using the aforementioned motifs, some may be
categorized into other Berkeley Motifs not listed above (such as branch-and-bound, dynamic programming),
while others may necessitate novel motif creation.

In addition to adding these kernels, we are considering work on parallel versions of the reference implemen-
tations. We will also accept user feedback and input on these issues and other expansions and modifications to
the testbed.
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Table 1.3: Brief Overview of enumerated kernels with their mapping to Dwarfs. Check marks denote progress
we’ve made towards a practical testbed for scientific computing. Note, orange boxes denote the mapping
of supporting kernels to dwarfs. TThere are optimized implementations spread among dozens of production
libraries and hundreds of research papers. We will included a subset of our relevant optimized implementations

in a future release of this work.




Chapter 2

Dense Linear Algebra

2.1 Lexicon/Terminology for Motif

Dense linear algebra computations involve a set of mathematical operators performed on scalars, vectors or
matrices. The word “dense” refers to the data structure accessed during the computation. These data are
usually accessed with a regular (or unit) stride and most of the matrix/vector elements are non-zeros. Indexing
of data elements can be calculated using a linear relation given the start of the data structure and the cartesian
coordinate of an element.

The computations introduced in this chapter can be broadly categorized based on arithmetic intensity of the
computation operated upon the data. We first introduce low arithmetic intensity operators, including scalar-
vector, vector-vector, matrix-vector, matrix-matrix, vector reduction, vector scan, and dot product, which carry
a constant number of arithmetic operations per data element. They are conventionally the basis of more
sophisticated kernels and solvers.

The last three computational kernels, LU, Cholesky and symmetric eigen-value decomposition, can be clas-
sified as solver and they exhibit high arithmetic intensity. Data are reused within each kernel, with reuse
dependent on the size of the data structure. In practice, the amount of data referenced is usually too large to
fit in a typical cache hierarchy, leading to observing smaller floating-point intensity per cached data. Tiling (or
blocking) is a common technique that can improve the data reuse for limited cache (or local store) sizes.

Dense linear algebra algorithms usually have a good scaling behavior for multiple reasons: the degree of
parallelism grows with the dataset size, and the intensity of floating-point operations per memory access can be
well-balanced with cache-based (or local-store based) microprocessor designs.

2.2 Scalar-Vector Operation

A scaler-vector operation on a vector x and a scalar « defines a binary associative operator on the elements of
the vector x paired with the scalar value a. The results of these operations are stored in an output vector y. A
scalar-vector normally appears in a sequence of operators on the data, used by a high-level solver.

2.2.1 Formal Mathematical Definition

A scalar-vector operation on a vector z € (R|C)" and a scalar o € R|C, resulting in a vector y € R|C is defined
as:
y = op(a, z) (2.1)

where op can be any binary operation, such as +, —, X, /, min, maz, etc. For instance, scalar-vector multiplica-
tion is defined as y = a X .



2.2.2 Scalable Problem Definition

It is usually possible to create a source vector of an arbitrary size. The importance of the content of the vector
depends on the operator involved. For instance, for addition, zero initialization could be enough to measure
performance, min operator requires random initialization of the vector. In practice, as these kernels are not
used in isolation, the initialization depends on the solver that uses these operations.

2.2.3 Verification Scheme

Verification of these operations is usually done in the context of verifying a high-level solver that calls these
operations. Verifying these operations in isolation, though straightforward, is usually not needed.

2.2.4 Functional Reference Implementation

Algorithm 1 presents a generic template for computing vector-scalar operation. The computation involves a
simple loop to apply the operator on the elements of the vector  with the scalar .

1: for i =1 ton do
2y — op'(a, ;)
3: end for

Algorithm 1: A generic reference implementation for a scalar-vector operation.

2.2.5 Literature Survey of Optimiations

The scalar-vector operation performance usually relies on the effectiveness of streaming the vector data. Prefetcher,
whether based on software or hardware-support, can improve the performance of this kernel. Traditionally, op-
timization of this kernel is better done in the context of the solver that utilize this operator. For instance,
data layout, which can influence the ability of the compiler to vectorize the code, cannot be optimally decided
without studying other instances of accessing the data.

2.3 Elementwise Vector-Vector Operations

A vector-vector operation on the vectors x and y defines an associative operator for each corresponding element
pairs of x and y. The results of these operations are stored in the corresponding elements of a vector z. Similar
to scalar-vector operations, they normally appear in a sequence of operators on the data.

2.3.1 Formal Mathematical Definition

A vector-vector operation on z € (R|C)™ and y € (R|C)™, resulting in a vector z € (R|C)™ can be defined as
follows:

= o) 22)

For instance, vector-vector addition is defined as z = = + y.

2.3.2 Scalable Problem Definition

See Section 2.2.2 for scalable problem definition comment on simple operators.

2.3.3 Verification Scheme

See Section 2.2.3 for problem verification comment on simple operators.



2.3.4 Functional Reference Implementation

Algorithm 2 presents a generic template for computing a vector-vector operation. It involves a simple loop over
the elements of the vectors x and y to apply the arithmetic operator and to store the results in the corresponding
element of z.

1: fori=1ton do
28z Opl(xuyi)
3: end for

Algorithm 2: Vector-vector operation reference implementation.

2.3.5 Literature Survey of Optimiations

Optimization of these operations requires data alignment of the input vectors such that they have good spatial
locality. As no reuse of data is involved, most of the optimization effort focuses on efficient streaming of the data,
including loop unrolling, data prefetching, and pipelining computation. On most architecture these operations
will be bounded by the bandwidth to the memory. Generally, optimizing these operators is better done in
conjunction with other operators on the data, by trying to maximize locality in accessing the data. See also
Section 2.2.5 for additional comments on optimizations for these simple operations.

2.4 Vector Reductions (sum/product/min/max)

A vector reduction operation on a vector x defines an associative operator used in sequence on the elements of
the vector x, resulting in a scalar z.

2.4.1 Formal Mathematical Definition

A reduction on a vector z € (R|C)™ to compute a scalar z € R|C can be defined, for instance, for the sum
reduction as:

z = Zml (2.3)

A vector-multiplication reduction can be defined as

z = H.’El (24)

Similarly, other reduction operators, such as min(), or max(), can be defined as well.

2.4.2 Scalable Problem Definition

See Section 2.2.2 for scalable problem definition comment on simple operators.

2.4.3 Verification Scheme

See Section 2.2.3 for problem verification comment on simple operators.

2.4.4 Functional Reference Implementation

Algorithm 3 presents a generic template for computing vector-reduction operation. The computation is done
through a simple loop over the vector x, while applying the operator for the scalar z and the elements of x. The
initial value of the scalar z is the identity value of the operator.

1The op can be any binary associative operator such as 4, —, X, /, min, or max

10



1: z « identity

2: fori=1ton do
30z« opt(z, ;)
4: end for

Algorithm 3: A generic reference implementation for vector reduction operations.

2.4.5 Literature Survey of Optimiations

See Section 2.2.5 for comments on optimizations for these simple operations.

2.5 Dot Product

A dot product operation on two vectors x and y involves finding the sum over multiplication of corresponding
element pairs of x and y. The result of these operations is stored in a scalar z.

2.5.1 Formal Mathematical Definition
The dot product of two vectors z € (R|C)™ and y € (R|C)" is defined as:

z=x-y (2.5)

2.5.2 Scalable Problem Definition

See Section 2.2.2 for scalable problem definition comment on simple operators.

2.5.3 Verification Scheme

See Section 2.2.3 for problem verification comment on simple operators.

2.5.4 Functional Reference Implementation

Algorithm 4 presents a simple implementation for the dot product of two vectors. A single loop nest is needed
to carry out the computation.

1: 2+ 0

2: for i =1ton do
3: Z— 2+ T; XY;
4: end for

Algorithm 4: Dot product of two vectors x and y.

2.5.5 Literature Survey of Optimiations

See Section 2.2.5 for comments on optimizations for these simple operations.

2.6 Scan

A scan operation can appear in solving long recurrence equations and in particle filter methods in statistics.
In a scan operation of an input vector x, resulting in an output vector y, each element of the output vector
corresponds to a reduction of the input vector elements up to the index output element. The operation can
be inclusive of the target index or exclusive of it. Computationally, both inclusive and exclusive operations are
similar, thus we will focus in the following discussion on one of them, for instance inclusive scan. For brevity,
we will focus on scan sum operation.

11



2.6.1 Formal Mathematical Definition

A scan-sum operator on a vector z € (R|C)™ resulting in a vector y € (R|C)" is defined as:
y=Ax (2.6)
where matrix A is a lower triangular matrix, whose non-zeros elements are all equal to one.

2.6.2 Scalable Problem Definition

See Section 2.2.2 for scalable problem definition comment on simple operators.

2.6.3 Verification Scheme

See Section 2.2.3 for problem verification comment on simple operators.

2.6.4 Functional Reference Implementation

Algorithm 5 shows a simple reference implementation for the scan operation.

1y <1
2: for i =2 ton do
3 YY1+
4: end for

Algorithm 5: A reference implementation for scan operation of an input vector x .

2.6.5 Literature Survey of Optimiations

See Section 2.2.5 for comments on optimizations for these simple operations.

2.7 Outer Product

The outer product involves multiplying two vectors z and y resulting in a matrix A. Outer product can be seen
as a special case of matrix-matrix multiplication, where the inner dimensions are unity.

2.7.1 Formal Mathematical Definition

The outer product of a vector z € (R|C)!*"™ multiplied by y € (R|C)!*™ resulting in a matrix A € (R|C)"*™
is defined as

A=zT @y (2.7)

2.7.2 Scalable Problem Definition

See Section 2.2.2 for scalable problem definition comment on simple operators.

2.7.3 Verification Scheme

See Section 2.2.3 for problem verification comment on simple operators.

2.7.4 Functional Reference Implementation

Algorithm 6 shows a simple reference implementation for the outer-product operation.
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1: fori=1ton do

2:  for j=1tomdo
3: Ai,j — X X Y

4 end for

5: end for

Algorithm 6: An outer product of two vectors x and y reference implementation.

2.7.5 Literature Survey of Optimiations

See Section 2.2.5 for comments on optimizations for these simple operations.

2.8 Matrix-Vector Multiplication

The matrix-vector product involves multiplying a matrix A by a vector x resulting in a vector y. A matrix-vector
multiplication is a special case of matrix-matrix multiplication where one dimension of a matrix is unity.

2.8.1 Formal Mathematical Definition

Multiplying a matrix A € (R|C)"*™ by a vector = € (R|C)**™ resulting in a vector y € (R|C)"*? is defined as
follows:

2.8.2 Scalable Problem Definition

See Section 2.2.2 for scalable problem definition comment on simple operators.

2.8.3 Verification Scheme

See Section 2.2.3 for problem verification comment on simple operators.

2.8.4 Functional Reference Implementation

Algorithm 7 shows a simple reference implementation for the matrix-vector multiplication. A two-nested loop
is needed to multiply each row of the matrix by the input vector resulting in an element of the output vector.

1: fori=1ton do

2 yi—0

3: for j=1tomdo

4: Yi — i+ Aij X x5
5 end for

6: end for

Algorithm 7: A matrix-vector reference implementation.

2.8.5 Literature Survey of Optimiations

See Section 2.2.5 for comments on optimizations for these simple operations.

2.9 Matrix Transpose

Matrix transpose is a frequently used computational kernel, which does not use the computational capability of
the system, but it stresses the latency and bandwidth of the memory subsystem.
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2.9.1 Formal Mathematical Definition

Transposing a matrix A € (R|C)™"*™ into a matrix B € (R|C)™*™ is denoted by

B= AT (2.9)

2.9.2 Scalable Problem Definition

The kernel processing does not depend on the content of the data making it easy to generate a problem of
arbitrary size. Choosing m, n parameters control the amount of processing, and the smaller the difference
between m and n the more the involved data movement. See Section 2.2.2 for additional comments on scalable
problem definition comment on simple operators.

2.9.3 Verification Scheme

See Section 2.2.3 for problem verification comment on simple operators.

2.9.4 Functional Reference Implementation

The simplest implementation of matrix transpose involves double nested loop, as shown in Algorithm 8. Copying
from the source matrix to the destination matrix can be characterized by unit-stride reads from the source matrix
and regularly distanced writes to the destination. This simple implementation does not exploit any caching and
the performance is usually bounded by the streaming capabilities of the computing elements.

1: fori=1ton do
2:  for j=1tomdo

3: Bij — Aji
4: end for
5. end for

Algorithm 8: Matrix transpose reference implementation.

2.9.5 Literature Survey of Optimiations

A naively implemented matrix transpose on a general-purpose processor may suffer performance degradation
because of the latency to access the memory system. Using prefetching can push the bottleneck to the bandwidth
of the memory system. Blocking or tiling can substantially improve the performance of this kernel. It divides
a matrix into smaller blocks that can reside in the processor cache hierarchy. The transpose process is done in
two phases, the first involves transposing each blocks. The second phase involves transposing these blocks. The
nested process can normally be extended depending on the number of levels of the cache hierarchy and the level
of sophistication of the data structure and coding.

2.10 Triangular Solve

Triangular solve is common technique in solving a system of linear equations, when the matrix representing
the equations has either upper or lower triangular form. A lower triangular matrix has all elements above the
diagonal equal to zero, while upper triangular has all elements below diagonal as zeros. A square matrix can
be converted into a triangular matrix using several decomposition techniques such as Schur decomposition. In
the following discussion we will focus on solving a system of linear equation where the matrix is already in a
triangular form.
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2.10.1 Formal Mathematical Definition
Triangular solve for a system of linear equations for a vector x € (R|C)™ in the form

Az =b (2.10)
where A € (R|C)"*"™ is a lower triangular matrix. Solving the system in Eqn. 2.10 usually involves iterative
substitution.
2.10.2 Scalable Problem Definition

Generating a scalable dataset for this problem can be done using random initialization of the array, while
setting the upper triangular elements to zeros for lower triangular arrays. Generally this kernel is used by other
high-level routine that does the initialization according to the problem.

2.10.3 Verification Scheme
The verification of this problem can be done through multiplying the matrix A by the vector x and comparing
the results with the vector b, certainly with tolerance to the system precision.

2.10.4 Functional Reference Implementation

Algorithm 9 shows a simple reference implementation for the triangular solve. Two nested loops are needed;
the inner loop is used to back-substitute the computed system unknowns; and the outer is used to compute one
of system unknown.

1: x1 «— bl/Al,l

2: for i =1ton do
Ty < b,’

4 for j =1toido

5: ZL’Z'<—£L'7;—A1"]' X Xj
6: end for
7

8

ol

T — T/
: end for

Algorithm 9: Triangular solve reference implementation.

2.10.5 Literature Survey of Optimiations

See Section 2.2.5 for comments on optimizations for these simple operations.

2.11 Matrix-Matrix Multiplication

Matrix-Matrix multiplication is frequently used in iterative methods, where a direct solve is difficult to compute.
It involves multiplying two matrices A and B resulting in a matrix C.

2.11.1 Formal Mathematical Definition

The multiplication of two matrices A € (R|C)™*", and B € (R|C)™*"™ resulting in a matrix C' € (R|C)"*™ is
defined as
C = AB (2.11)

The multiplication is defined iff the second dimension the matrix A is equal to the first dimension of the first
matrix. The computation complexity is O(n X r x m) and the memory access complexity is O(n x r 4+ r x m).
We will restrict the discussion in this section to the case when n = r = m, where the highest computational
intensity (floating point per memory words) is observed as O(n).
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2.11.2 Scalable Problem Definition

The computations of matrix-matrix multiplication do not depend on the values of the matrix elements. Gen-
erating scalable problem is straightforward; the dimensions of the input arrays can be varied arbitrarily, and
the contents of the arrays can be randomly initialized. See Section 2.2.2 for additional comments on scalable
problem definition comment on simple operators.

2.11.3 Verification Scheme

See Section 2.2.3 for problem verification comment on simple operators.

2.11.4 Functional Reference Implementation

The simplest implementation of matrix-matrix multiplication involves a triple nested loop, as shown in Algo-
rithm 10. Even though each element of the input matrices A and B is visited multiple times during the course
of computation, the reference implementation may not be able exploit caches to capture this locality, especially
when the matrices sizes exceed the size of the cache.

1: fori=1ton do

2 for j =1tom do

3 Ci’j —0

4 for k=1tor do

5: Ci;—Ci;+ Ai,k X By ;
6 end for

7 end for

8: end for

Algorithm 10: Matrix-matrix multiplication reference implementation.

2.11.5 Literature Survey of Optimiations

For realistic datasets, input matrices cannot fit in the caching system on most microprocessors. Code opti-
mizations for matrix-matrix multiplication try to expose temporal locality of references for the input matrices.
Conventionally, this is accomplished by blocking the input matrices into b x b blocks and computing resultant
matrix by multiplying the smaller blocked matrices. The block size is chosen to guarantee that one block of
matrix A and another from B will fit in the highest level of cache, L1 cache for instance [75]. Blocking for other
level of caches can improve performance as well.

This computation is usually amenable to vectorization; depending on the architecture memory, alignment
and padding may be needed [75]. Given the streaming behavior of this computation prefetching can be leveraged
using software or hardware techniques.

2.12 Solver of Linear System (LU Factorization)

LU factorization aims at factorizing a matrix to achieve a triangular form that can be used to solve a system of
linear equations easily.

A matrix A € R™*" has an LU factorization iff all its leading principle minors are non-zeros, i.e., det(A[1: k, 1 :

0 for k=1:n—1. A non-singular matrix can have an LU factroization if it satisfy this condition. For detailed
description on the conditions for existance and uniqueness readers can refer to [64]. The LU factorization can
be used in solving a system of linear equations.

2.12.1 Formal Mathematical Definition

The LU factorization of a matrix A takes the form:
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A=LU (2.12)

where L and U are lower and upper triangular matrices, respectively. Their dimensions are similar to that of
the matrix A.

2.12.2 Scalable Problem Definition

Scalable problem definition can start by generating a randomly initialized lower and upper matrices L, and U,
then multiplying them to generate the input matrix A.

2.12.3 Verification Scheme

The verification of the LU factorization is usually straight forward by multiplying the upper and lower triangular
part of the factorization and then computing the root mean square error of the resultant matrix compared with
the original one. Verification success is usually achieved when the residual is less than a predetermined tolerance
value.

The input dataset initialization should ensure the possibility of the factorization and ease the verification by
reducing the rounding effect.

2.12.4 Functional Reference Implementation

A common technique to compute the upper triangular part of the factorization, U, is to use gausian elimination,
see for instance [52]. The main computation is a triple-nesting loop procedure that is shown in Algorithm 11.
The floating-point operations involved in this computation is O (ng), while the data accessed are O (nQ) . This
shows that the arithmatic intensity of the alogorihm, defined as floating-point operations per byte, increases
with the problem size. For practical problem sizes the dataset cannot fit in the cache, leading to a much less
reuse of the cached data than what the computational kernel has. In the next section, we will discuss some of
the techiques used to improve the data reuse.

1: for i =1 ton do

2:  Find maximum absolute element in column ¢ below the diagonal
3:  Swap the row of the maximum element with row ¢
4: for j=i+1tondo

5: Lj,i — Aj,i/Ai,i

6: end for

7. for j=itondo

8: Ui,j — Aq’/’j

9: end for
10 for j=i+4+1tondo
11: for k=i+1tondo
12: Aj,k — Aj,k‘Lj,i X Ui,k
13: end for
14:  end for
15: end for

Algorithm 11: Computing LU factorization using Gaussian elimination method.

2.12.5 Literature Survey of Optimiations

Multiple variants of the same algorithm exist to handle rectangular matrix [52], to reduce the rounding errors,
and to improve the computation efficiency. Most optimization tries to rearrange the data and computation such
that more temporal locality is exploited while factorizing the array. A notable optimization is tiling the main
array into smaller blocked arrays that can fit on a cache size, depending on the targeted hardware [40, 69]. The
computation can also be easily vectorized by a compiler when the data layout carries spatial contiguity.

17



2.13 Solver of Linear System (Cholesky Factorization)

A well-known technique for solving a system of linear equation is Cholesky decomposition, which transform a
matrix, A, into a product of an upper triangular matrix U and its conjugate transpose. Cholesky decomposition
can be much faster than alternative methods for solving a system of linear equation for the special class of
matrices that are symmetric (or Hermitian for complex matrices) and positive definite.

2.13.1 Formal Mathematical Definition

Given a positive definite matrix A € (R|C)™*", Cholesky decomposition seeks to find an upper triangular matrix
U such that:

A=UTU (2.13)

The condition for a matrix A to be positive definite can be stated as for all non-zeros complex vectors x € C"
then

x*Ax >0

where x* is the conjugate transpose of x.

2.13.2 Scalable Problem Definition

The only condition that needs to be satisfied for the input matrix A is that it has to be positive definite to
guarantee convergence to solution. The actual content of the matrix does not affect the amount of computation
needed. A scalable definition can involve creating an upper diagonal matrix and then multiply it by its conjugate
to compute the initial matrix.

2.13.3 Verification Scheme

Verification of this kind of problem is usually straight forward based on the problem definition. Given the
upper triangle matrix U, one can multiple it by its conjugate and compare the results to the original matrix A,
certainly with some tolerance due to precision and rounding errors.

2.13.4 Functional Reference Implementation

Cholesky Method have some commonality with LU factorization in terms of the computational kernel. Algo-
rithm 12 outlines the procedure involved in computing the elements of the Matrix U.

Cholesky factorization generally requires 1/3n? flops, approximately half that is needed for LU factorization.
It also does not need pivoting, but it applies to restricted class of matrices.

The reference implementation of this kernel will be included in a future release of this testbed.

2.13.5 Literature Survey of Optimiations

The computational characteristics of Cholesky carry a lot of similarity with LU factorization. Doing computation
element-wise is not the most efficient way, instead the matrix is divided into square tiles (or blocks) to operate
upon.

Load balancing the workload is usually tricky because the amount of work increases with the outer loop,
unlike LU where the workload decreases. In both cases, the conventional approach is to have a cookies cutter
assignment, for more information reader can refer to [64].
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1: fori=1ton do

2: for j=itondo

3 sum «— A; ;

4 for k =1toido

5: sum < sum - L; j x L;,k
6 end for

7 if i = j then

8 if sum < tol then

9: Cholesky failed (A not positive definite)
10: end if
11: Ui, < +/sum
12: else
13: Uj,i — SUlinLL
14: end if
15:  end for
16: end for

Algorithm 12: Computing Cholesky U Matrix for a positive definite matrix A.

2.14 Symmetric Eigenvalue Decomposition

Eigenvalue computation is of great importance to many problems in physics. The computation of eigenvalue
is of great importance in control system theory, vibration analysis, quantum mechanics theory, etc. Depending
on the problem domain, the largest eigenvalues in magnitude (called the dominant eigenvalues) can be of more
importance than others.

2.14.1 Formal Mathematical Definition

The eigenvalues of a matrix A € R™*"™ are the n roots {A1,---,\,} of its characteristic polynomial p(z) =
det (A = 2I). The determinant of the matrix A can be expressed as [[;_, \;. A non-zero vector x € C" is
referred to as eigenvector if it satisfy

Az = \z (2.14)

The computation of eigenvalues must be iterative if n > 4. One way of computing eigenvalues is based on
QR factorization of the matrix A that will be discussed in detail in Section 2.14.4. Symmetry guarantees that
the eigenvalues of A are real and that there is an orthogonal basis for eigenvectors. In the following discussion
we will consider only the case where the matrix A is symmetric, and will only compute eigenvalues of the given
matrix.

2.14.2 Scalable Problem Definition

The generation of scalable random matrix starts with choosing an eigenvalue distribution. For a given eigenvalues
A, a diagonal matrix, D, is created as D = diag(\). An orthogonal matrix @), generated from a random entries,
can be used to generate the input matrix A = Q7 DQ. The matrix A can be reduced to a tridiagonal form. The
size of the eigenvalues and its distribution control the difficulty associated with the computation. We followed
the path set by Demmel et. al [50] in generating multiple input test cases that allow to uncover not only the
performance of a particular algorithm, but also its idiosyncrasies.

2.14.3 Verification Scheme

To verify that eigenvalues are correctly computed, we simply compare the computed eigenvalues of the product
A = QT DQ with the original generated eigenvalues. The maximum difference between the eigenvalues must
satisfy the user specified tolerance to pass. Default tolerance is 1071°.
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Also, the computation of the eigenvalues is frequently associated with the computation of eigenvectors. The
numerical accuracy of the computation [50] usually involves verification of the orthogonality of the eigenvectors
and the accuracy of the eigen-pairs. For certain applications, only the dominant eigenvalues are of importance.
Assuming m dominant eigenvalues are computed for the tridiagonal matrix A € R™*", where the eigenvalues
are W = diag(wiws - - - wy,) and the associated eigenvectors are Z = [z129 -« - 2z, then the orthogonality of the
eigenvectors and the accuracy of the eigenvalues can be computed as follows:

Wr=zz e
orthogonality = ”In_xzqupZ”
s Wm<n
lazwar) e
accuracy = | \;Tllzgiz;[l/p” ’
ATy W m<n

where ulp is the unit of least precision of a particular system, representing the numerical precision. The current
reference implementation only computes eigenvalues and not eigenvectors. Thus, it does not include this more
sophisticated and expensive verification scheme.

2.14.4 Functional Reference Implementation

To compute the eigenvalues of a symmetric matrix A for a given tolerance greater than ulp, the symmetric QR
algorithm, see Algorithm 14, can be used. The algorithm uses an implicit QR step with Wilkinson shift [64]. At
the end of the computation, the Diagonal elements of the matrix D will carry the computed eigenvalues. The
reference implementation computes only the eigenvalues and not the eigenvectors as this provides significant
savings.

1: d « (Tn—l,n—l —Tn,n)/Q

2 pe—Tnpn— Tr%,nfl/(d + sign(d),/d* + t%,n—l)
3 T — T171 — K

4: 2z — T271

5 Z«— I

6: for k — 1lton — 1 do

7. G} < compute Givens rotation [64] of z and z
8 T« Gg -T -Gy,

9. if k<n—1then
10: T < Tk+1,k
11: Z Tk+2,k
12:  end if
13:  Z+— Z- -Gy
14: end for

Algorithm 13: Implicit QR step.

Algorithm 14 shows the iterative algorithm to compute the eigenvalues. All A; have the same eigenvalues.
The algorithm converges when the A; becomes a triangular matrix and the eigenvalues becomes simply the
diagonal elements of the matrix.

In practice, it is impractical to compute the exact eigenvalues instead a certain error tolerance can be set for
convergence test. The eigenvectors can be computed as a column of the product of the orthogonal transformation

Q=Q1Q2--- Qs

2.14.5 Literature Survey of Optimiations

The optimization of the above formulation for computing eigenvalue is tightly related to improving the QR
factorization part. Tiling the QR computations can significantly improve the cache performance [37, 40, 41].
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1 T — Q7 A-Q {Compute tridiagonalization of the input matrix by finding an orthogonal matrix Q}
2: DT

3: q+—0

4: while g # n do

5 fori=0ton—1do

6 if min (|[dis1all, l|diiall) < tol - ([|diill + [[dis1,i41]]) then
7 Di+1,i —0

8 Djiy1 0

9 end if

10:  end for
11:  Format the matrix D such that ¢ is the largest and p is the smallest

D171 0 0 P
D= 0 Do O n—p—q
O 0 D3,3 q

n n—p—q ¢q

Where D3 3 is diagonal and D2,2 is unreduced.
12:  if ¢ < n then

13: apply ImplicitQR, §Algorithm 13, on D3 o
14: X — diag (I, Z,1,)

15: D—XT".-D-X

16: Q—Q-X

17:  end if

18: end while

Algorithm 14: Computing eigenvalues based on QR algorithm.

Some domain specific optimization can reduce the amount of computation by computing the only dominant
eigenvalues.
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Chapter 3

Band Linear Algebra

Where the dense linear algebra chapter enumerated computational kernels that operated on dense or triangular
matrices, this chapter deals with matrices whose nonzero elements are clustered within a band along the diagonal.
As operations on zeros may be statically eliminated, we may define a complementary set of computational kernels
that exploit this property.

These kernels will be enumerated in a future release of this testbed.
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Chapter 4

Sparse Linear Algebra

In this chapter we examine generalized sparse linear algebra and discuss its key aspects, challenges, and compu-
tational kernels. We will examine several basic kernels: SpMV, SpTS, matrix powers, as well as integrate them
into more complex PDE solvers including explicit, implicit/iterative, and implicit/direct methods.

4.1 Lexicon/Terminology for Motif

Like dense linear algebra, sparse linear algebra operates principally on three objects: scalars, vectors, and
matrices. However, what distinguishes sparse linear algebra from dense is the fact that the vectors and matrices
can be “sparse”. That is, a predominance of the elements are zero. Thus, like band linear algebra, operating only
on the nonzeros reduces both the bulk storage and computational requirements. We differentiate sparse linear
algebra from band in that there is no mandated rhyme or reason as to the “sparsity” pattern, or distribution,
of nonzeros. As a result, substantial storage and (non floating-point) computational overhead is required to
represent and operate directly on a sparse vector or matrix. In practice, there is relatively little difference in
sparse vectors and sparse matrices as the former can easily be represented as a 1xN special case of the latter.
As such, in this chapter we will focus on operations on sparse matrices and dense vectors.

Where dense linear algebra is dominated by one of two representations (column-major or row-major), in
sparse linear algebra there is a myriad of formats that have been tailored for matrix, kernel, and processor
architecture. However, by far, the most common format (and the one used for all included reference imple-
mentations) is compressed sparse row (CSR). In CSR, each matrix is represented by 3 arrays. First, we have
an array containing all the nonzero values (V[number_of nonzeros]). It is key that the elements of this array
be properly sorted. All nonzeros within a row of the matrix are contiguous in the array. Additionally all such
blocks of nonzeros are sorted by their row. Thus, if we were to examine the array, we would first see a block of
nonzeros for row 0, immediately followed by a block of nonzeros for row 1, and so forth. Mirroring the nonzero
value array is an array that hold the nonzero column indices (V[number_of nonzeros]). Finally, to express
how these array of nonzeros are partitioned into rows, we include a row pointer array (P[number_of _rows]).
By convention we interpret its contents as the array index of the first element of each row either starting with
row 0 or at row 1. Thus, for each nonzero, we explicitly store its column address while implicitly storing its row
address (calculated by position in the array). In the dense linear algebra world, both indices would be implicitly
stored (calculated based on position within the array).

4.2 Sparse Matrix-Vector Multiplication (SpMYV)

Perhaps the canonical sparse kernels is sparse matrix-vector multiplication (SpMV). Unlike the dense matrix-
vector multiplication, SpMV is challenged by random memory access and locality that can not be predicted
without first inspecting the matrix. We see SpMV at the core of many routines across many domains including
scientific computing, financial modeling, and information retrieval. As such, understanding its performance
characteristics and optimizing for them is often key to improving application performance.
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4.2.1 Formal Mathematical Definition

Simply put, we evaluate ¥ = A - &, where A is a sparse matrix and Z and ¢ are dense vectors. In the dense
world, we would express this as y; = > . ;Aij x z;. However, as most matrix entries (A; ;) are zero, it is not
uncommon to rework the problem definition to only operate on the nonzeros:
y=0
V nonzero A; ;:
Yi = yi + Aij X x5

More complex operators, including §f = AZ+ 7 and z = 7 A%, and solvers like Conjugate Gradient are often
built from SpMV. As such, the challenges and insights garnered from optimizing SpMV are broadly applicable.

4.2.2 Scalable Problem Definition

For simplicity, consider the finite difference method discussed in Chapter 5. We may leverage the grid, its
discretization, and its initial and boundary conditions as a means of providing the sparse linear algebra routines
with a similar scalable problem definition and verification scheme. In essence, the values of the discretized grid
(including the boundary) may be encapsulated into the source vector. Similarly, as the finite difference method
produces linear operators, we may encapsulate the elements accessed as nonzeros in a row and the weights as
their values. We may define a matrix for each of the 7 basic operators discussed in Chapter 5. By themselves,
these operators each translate into one SpMV operation.

For example, given a NxNxN grid and the 3D homogeneous Laplacian operator, we produce a matrix with
N3 columns and N3 rows with 7 nonzeros in the majority of rows (fewer nonzeros appear in rows corresponding
to grid boundaries). With the simplest mapping of grid points to array (vector) indices, we produce a septa-
diagonal matrix. To fully test the breadth of complexity, we may change the enumeration (mapping) of grid
points within a row, plane, or in 3D, the entire volume. Doing so permutes the rows and columns of the matrix.
Furthermore, to exacerbate load balancing challenges, we may randomly add explicit zeros to the matrix. Thus,
the number of nonzeros per row can be variable and significantly larger than 7. These additional elaborations
to the problem definition will be explored in a future release of this testbed, along with matrix versions of
remaining differential operators.

4.2.3 Verification Scheme

To verify these kernels, we may find the solution to the differential operator analytically. We may then descretize
and enumerate the solution grid commensurate with how we descretized and enumerated the input grid. We
then compare element by element and in element wise norm. This verification code is in the Structured Grid
section of the reference implementations because operators for comparison and initialization of grids reside there.
The test set for this operator is described in the following table. All the included functions have homogeneous
boundary conditions on the three dimensional unit cube. As discussed in Section 5.3, the parameter 7 (called
toughness in the code) is a user specified difficulty parameter, which is modified in the calling function to ensure
that the function is actually zero on the boundary of the cube. A coefficient is placed in in the first function to
make the numerical difficulty in evaluating its Laplacian similar to that of the second.

4.2.4 Functional Reference Implementation

The following is the simplest CSR implementation where x[ ] and y[ ] are the destination vectors, Pointers[
1 is the row pointer array, Column[ ] is the array of nonzero column indices, and Values[ ] is the array of
nonzero values.

nnz=0;
for(row=0; row<N; row++) {
double yO = 0.0;
while (nnz<Pointers[row+1]){
yO += Value[nnz] * x[Column[nnz]];
nnz++;

}
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u(z,y, z) Vu

w5 sin(rra)sin(rry)sin(Trz) — 15 (37%m?) sin(Tmx)sin(Try)sin(Tmz)

(2% —2)(y* —y) (2> - 2) 27((2* —2)(y* —y) + (2% — 2)(2* = 2) + (* — y)(2* — 2))

Table 4.1: Test functions for Homogeneous Laplacian to be evaluated with SpMV and exact solutions to the
continuous problem. Sampling will provide a check against the finite difference solution.

y[row] = yO;
}

4.2.5 Literature Survey of Optimizations

SpMYV has seen a plethora of optimizations. Broadly speaking these can be classified into minimizing memory
traffic (armotization of meta data, exploitation of symmetry, elimination of cache capacity misses), maximizing
bandwidth (e.g. prefetching), and improving in-core performance (maximizing ILP and DLP, whilst minimizing
instruction overheads per nonzero). Williams et al’s recent multicore papers provide excellent information on
performance optimization [105, 106].

4.3 Sparse Triangular Solve (SpTS)

Like dense triangular solve, sparse triangular solve (SpTS) solves either LZ = b or UZ = b. However, unlike the
dense world where parallelism abounds and is predictable as one proceeds, the sparsity of L or U immensely
complicates the efficient execution of this kernel.

4.3.1 Formal Mathematical Definition

Recursively, we often define triangular solve as:

v = 7 (bi — STl Lij x ).

Although such a definition suggests operating on rows, it is possible to restructure the algorithm to operate
on columns of L by starting with the solution to a simpler problem IZ = b (Z = b) and refining it by deducting
the off-diagonal elements of L. In SpTS, with most L; ; == 0, the computation required per row or column is
substantially less.

4.3.2 Scalable Problem Definition

Solve the linear system Ax = b where A is a lower triangular matrix and b is a random vector. To generate
matrices, a simplified version of the matrix generation scheme described in [60] is followed. A lower triangular
matrix with a randomized distribution of non-zeros is generated. Diagonal entries are selected to ensure the the
matrix is non-singular. Below diagonal entries of the matrix are distributed in bands according to their distance
from the diagonal. The approximate number of nonzeros in each band is specified by the user. The current
implementation may cause collisions of matrix entries. The input generator removes such entries and formats
the matrix into CSR format. The user should consider that this method may produce slightly fewer nonzeros
in the matrix than requested because of collisions. Blocked structures are not considered for this release.

25



4.3.3 Verification Scheme

To verify the solutions to the kernel, a matrix is generated as described above and a randomized vector z is
generated. Matrix multiplication is performed to generate the right hand side vector b. The computed solution
is then checked to match the original solution with a maximum difference and I, relative error of less than 10719,
Strategies for more sophisticated verification are in consideration for a future release.

4.3.4 Functional Reference Implementation

The following Matlab code solves Az = b where A is a lower triangular matrix in CSR format:
function x = spts(b, n, rowPtr, columnIndices, values)

x(1) = b(1) / values(1);
for rowNum = 2:n

sum = 0.0;

for j = rowPtr(rowNum) : rowPtr(rowNum+1l) - 2

sum = sum + values(j) * x(columnIndices(j)) ;

end

x(rowNum) = (b(rowNum) - sum) / values(rowPtr(rowNum+1) - 1) ;
end

4.3.5 Literature Survey of Optimizations

A survey of optimizations will be included in a subsequent revision of this report.

4.4 Matrix Powers Kernel (A*x)

In isolation, the matrix powers (A¥x) kernel has limited applicability. However, when included in an iterative
solver like GMRES, optimized A¥x implementations (in conjunction with TSQR) can substantially accelerate
performance.

4.4.1 Formal Mathematical Definition

The matrix powers kernel creates an n x (k4 1) matrix Y whose columns are defined as Y; = A1Z. or simply
put, Y = [Z, AZ, A%7, ..., Akf]. Once again, A is a sparse matrix, & is a dense vector, and Y is a tall skinny
dense matrix.

4.4.2 Scalable Problem Definition
We may reuse the finite difference PDE solver (explicit method) discussed in Chapter 5.

4.4.3 Verification Scheme

To verify this problem we discretize the analytic solution in both space and time (each of k steps). We then
compare point by point for each power k. In essence this is verifying the time evolution a time s - At matches
the analytic solution for all s < k . For simplicity we may also only compare the value at k- At

4.4.4 Functional Reference Implementation

The following is a simple matrix powers kernel based on the aforementioned CSR SpMV kernel.

for (kk=0;kk<k;k++}{
nnz=0;
for(row=0; row<N; row++) {
double yO = 0.0;
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while (nnz<Pointers[row+1]){
yO += Value[nnz] * x[kk][Column[nnz]];
nnz++;
}
x[kk+1] [row] = yO;
}
}

4.4.5 Literature Survey of Optimizations

This kernel has only recently garnered performance optimization attention as a result of multicore processors
being increasingly memory bandwidth starved. Naively, one computes each matrix power successively. Doing
so requires reading the matrix k& times. However, one may reorganize the matrix powers kernel in a communi-
cation avoiding-fashion, and asymptotically, for certain matrix classes, eliminate all but one read of the matrix.
Typically, this optimization requires computation of subsets of several matrix powers. Recent publications in
this area have shown significant speedups [81].

4.5 Sparse Matrix-Matrix Multiplication

This kernel and its relevant details will be included in a future release of this testbed.

4.6 Conjugate Gradient (CQG)

As discussed in the dense linear algebra chapter, there are many interesting problems that can be formulated
as the solution to a system of linear equations. In this chapter, we’ll focus on the case where the matrix is
sparse (A -7 = [_)') . Conjugate gradient (CG) is an iterative method for solving systems of linear equations
whose matrix is symmetric positive definite. The method proceeds by taking an approximation and the residual
(7= b—A- %) and formulating a new solution based on a projection. The result is a sequence of approximations

to &, labeled z(*). For further reading, we direct the reader to [25].

4.6.1 Formal Mathematical Definition

Algorithm 15, (reproduced from [25] with permission), represents a common implementation of the Conjugate
Gradient Method. The terms were defined in the previous section.

1: compute (9 = b — Az for some initial guess (%)
2: fori=1, 2, ..do

3: Pi—1 = r(i_l)Tr(i_l)
if i =1 then
PV = 7O

else
5@—1 = Ri—l/ﬂi—Q )
p(") — 7’("71) + ﬁi—lp(lil)
end if
10: q(i) = Ap(i)
1 o = pi/p@ ¢
122 () =01 4 ozip(i)
13: 7’(2) = r(iil) f— alq(z)
14:  check convergence, and continue if necessary.
15: end for

Algorithm 15: Conjugate Gradient (CG) iterative method. Reproduced from [25] with permission.
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4.6.2 Scalable Problem Definition

Two separate problems are considered.

First is the solution of a Solve the linear system Ax = b where A is a symmetric positive definite matrix and
b is a random vector. As for SpTS, to generate matrices, a simplified version of the matrix generation scheme
described in [60] is followed. The scheme is modified to produce a symmetric diagonally-dominant matrix.
Off diagonal entries are generated first, then diagonal entries are selected to force the matrix to be diagonally
dominant.

Second, we may use the heat equation problem described in Chapter 5, but recast it as a sparse problem as
we did for SpMV. At each time step, we wish to solve A - u;11 = uy where A is the Helmholtz matrix.

4.6.3 Verification Scheme

The verification scheme for the linear system solve is the same as that used for SpTS. The verification scheme
for the PDE solve is the same as that used in the structured grid chapter.

4.6.4 Functional Reference Implementation

The following Matlab code solves Ax = b where A is a symmetric, positive-definite matrix in CSR format. The
vector “guess” is an initial guess to the solution of the sytem:

function x = conjugateGradient(b, n, rowPtr, columnIndices, values, guess, maxIt)

neps = eps() ;
X = guess;

fcompute residual
r =b - spmv(x, n, n, rowPtr, columnIndices, values);
rho = norm(r)~2 ; % L_2 norm squared

iter = 0 ;
while( sqrt(rho) > neps * norm(b) )

if( iter == 0 )
Pp=r

else
beta = rho / lastRho;
p = r + beta * p;

end

w = spmv(p, n, n, rowPtr, columnIndices, values);
alpha = rho / (p’ * w);

X = x + alpha * p;

r = r - alpha * w;

lastRho = rho;

rho = norm(r)"2;

iter = iter + 1;
if iter > maxIt
return ;
end
end

4.6.5 Literature Survey of Optimizations

A survey of optimizations will be included in a subsequent revision of this report.
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4.7 GMRES

Once again, we wish to solve A - & = 5, but with the caveat that A is not symmetric (a prerequisite for conjugate
gradient). The Generalized Minimal Residual (GMRES) method can solve such unsymmetric systems. However,
unlike CG, where only a couple vectors needed to be stored, GMRES requires all previous orthogonal vectors be
kept. To minimize the resultant storage and computational impact, a restarted version of GMRES is commonly
employed. Thus, GMRES is parameterized by the restart length m. Also crucial to the performance of this
algorithm is the selection of a preconditioner matrix. The selection of these parameters is discussed in [25].

4.7.1 Formal Mathematical Definition
For a formal definition of GMRES, we direct the reader to page 18 of [25].

4.7.2 Scalable Problem Definition

As in the Conjugate Gradient section, the problem definition for this section is the solution of a Solve the linear
system Ax = b. Here A is a general nonsingular matrix and b is a random vector. As before, a simplified version
of the matrix generation scheme described in [60] is followed. This version produces general matrices with a
banded structure of nonzeros.

4.7.3 Verification Scheme

The verification scheme for the linear system solve is the same as that used for SpTS.

4.7.4 Functional Reference Implementation

The reference implementation may be found in the source code download. For the current release the reference
implementation of the kernel is included only in the Matlab version.

4.7.5 Literature Survey of Optimizations

A survey of optimizations will be included in a subsequent revision of this report.

4.8 Sparse LU (SpLU)

This kernel and its relevant details will be included in a future release of this testbed.
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Chapter 5

Finite Difference Methods on
Structured Grids

In this section we discuss the numerical solutions to partial differential equations. As the title suggests, we’'ve
made two restrictions for this “motif”: all grids are structured, and the numerical solutions are attained via
the finite difference method. We will examine the fundamental partial derivatives, the fundamental differential
operators including Laplacian(V?u), Divergence(V - F), Gradient(Vu), and Curl(V x F), as well as approaches
to solving partial differential equations. For purposes of this chapter, we will examine the 3D heat equation.

5.1 Structured Grid

All PDE’s operate on some continuous medium. When providing computational solutions, it is necessary to
create a discrete representation of this medium. To that end, we employ a “structured grid” to represent the
medium. Concurrently, as we’ve restricted ourselves to examining solutions via the finite difference method, we
represent the continuous medium via uniform sampling in each dimension of the medium.

Given a continuous function u(z,y, z,t) indexed by real numbers, we may construct a sampled grid w; j i+
indexed by integers: w; j ¢ = u(i-h,j-h,k-h,t-h). Such a relationship is visualized in in Figure 5.1. We may
replace one of the spacial dimensions with time, but the finite difference method remains the same (5.2).

BIEIFN fi=fix)

L . L L . . L A
T T T T T T T > X

0 0 h 2h 3h 4h 5h 6h 7h ‘

(a) (b)

Figure 5.1: Simple 1D example showing uniform sampling (h) of a continuous function f(z). The result is a
set of coordinates x; = i - h and the corresponding values of f(x;).

We describe each element of the sampled grid as a “point”. Note, although not necessary, we have preserved
the dimensionality of the continuous function when expressing the sample set. In the same way we sampled a
Cartesian grid, we could have sampled a polar or spherical grid (although the finite difference method would
have been more complex). Moreover, we correlate the boundary of the medium to the points we sample. That
is, the grid is only representative of a specific range in z, y, and z.
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Figure 5.2: (a) Temperature of a continuous medium f(z,t). (b) Space and time are uniformly descritized and
f(x,t) is sampled.

It should be noted that the grid need not be restricted to scalar grids (e.g. Temperature), but could easily be
a Cartesian vector grid F; ;1 ;. Where F; ;1 ; is a composed of 3 components: F'x; j k¢, FYi jk,e, and Fz; g .
The most obvious examples of latter include velocity and magnetic fields.

5.2 Linear Algebra Correlation

The resultant structured grids are often stored as an array upon which we apply a stencil operator (described in
the following sections). However, we may alternately view the grid as a vector and the stencil as a sparse matrix.
In such scenarios, applying the stencil to the grid is simply a sparse matrix-vector multiplication. The matrix
captures both the structure (connectivity of points) as well as the functionality (weights) of the stencil operator.
In the case of structured grids, the connectivity is trivially calculated and the functionality is isomorphic — the
same stencil weights are applied to every point. As such, there is a substantial performance boost when such
computations are “matrix-free”. This chapter (and by extension, this motif) is premised on this benefit.

5.3 Partial Derivatives

. . . . . . . . . Ou Ou Ou
For a 3-dimensional, time-varying continuum u(z,y, z,t), we may define four partial derivatives: =, By 02

and %. In essence, these primitives kernels are analogous to the BLAS kernels found in dense linear algebra.
Typically, one uses these to construct solvers for complex equations.

5.3.1 Formal Mathematical Definition

The most basic implementation of the finite difference method can use backwards, forwards or central differ-
encing. All produce first order accuracy. That is the accuracy is linearly proportional to the discretization.
Table 5.1 lists the 12 combinations. The constants (a, 8, etc...) are derived from the discretization that pro-
duces the grid. To apply one of these derivatives, one must construct two grids: one for u; ;+ and one for its
derivative. Then we “sweep” over all ¢, j, k, and ¢ applying the finite difference method at each point. Often,
when calculating spatial derivatives, ¢ is fixed. As such, one typically creates u; j i.+,, and one only iterates over
1,7, k.

5.3.2 Scalable Problem Definition

Structured grid calculations are easily scalable. One need only increase the resolution of the sampling. To
that end, we may define U(z,y, z,t) in such a way that we may sample it symbolically. For example, if we let
U(z,y, z,t) =z - sin(y) - cos(z) - e*, then it is trivial to generate u; j+ = u(i-h,j-h,k-h,t-h) We may then
define an interval for the variables: 0...3 for example.
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Backward Central Forward

gr O(Wigke —wi-1gke) 5 (Wit gkt — Wic1gke)  (Witd ket — Wi k,t)

2 Bluigrs —tig-tkt) 5 = igo1ke)  BWigat ke — k)

5 YWigke —ijk—1,0) 3 Uijkt1,e — Wigk—1,) V(Ui = Uijk,t)

ot 5(Ui,j,k,t - ui,j,k,tfl) g(ui,j,k,tﬂ - Ui,j,k,tq) 5(Ui,j,k,t+1 - Ui,j,k,t)

Table 5.1: Partial derivatives via first order backward, central, and forward finite difference method. If the

discretization is uniform in x,y,z, then we define a = 8 =~ = %

Verification Scheme

We may symbolically manipulate our scalable problem definition to exactly calculate the partial derivatives
(Table 5.2). We may then sample the exactly calculated derivative in the same manner we sampled the original
function. The result can be compared point-wise with the result obtained via the finite difference method. Each
point should be within the default tolerance of 107® and the element-wise I relative error should be below the
tolerance of 10~°, or user specified values.

The specific test set for this differential operator, shown with the corresponding partial derivatives, is as
follows. The parameter 7 (called toughness in the code) is a user specified difficulty parameter. Larger values
of 7 result in more numerically challenging functions of the same type. For example, raising the value of 7
makes one of the trigonometric functions in the test set have a higher frequency, and thus larger truncation
errors when using the finite differencing scheme. For this version of this kernel, there is no dependence on the
time variable t.

u(x,y, 2) 2 u(x,y,2) u(z,y, 2) Zu(z,y,z)

sin(tx)sin(2Ty)sin(47z)  Tcos(tx)sin(2Ty)sin(47z)  27sin(rx)cos(2Ty)sin(4rz)  4Arsin(tx)sin(2Ty)cos(4Tz)

3

Tryz + (Toyz)? + (tayz)® Tyz + 22(1y2)? + 327 (1y2)® Tz 4 2y(T22)? + 3y (T22)® Ty + 22(THY2)? + 322 (THY2)?

TXYZ Tyzerxyz TrzeTTY? Tmyeﬂvyz

Table 5.2: Test functions for Partial Derivatives and exact solutions to the continuous problem. Sampling will
provide a check against the finite difference solution.

5.3.3 Functional Reference Implementation
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: for kK =i to kmax do
for j =i to jmaz do
for i =1 to imax do
ResultantGrid(i,j,k,t) = Stencil(Grid,i,j,k,t)
end for
end for
end for

Algorithm 16: Typical structure of a stencil sweep on a 3D grid

5.3.4 Literature Survey of Optimizations

There are many common optimizations associated with structured grid calculations. When coping with the
limitations of compilers which may not be able to disambiguate two pointers (the grids), loop unrolling of the
spatial loops allows for the expression of more parallelism. Depending on the differential operator and traversal
of the grid, the finite difference method can produce a particular reuse pattern. On cache-based architectures,
restructuring the grid traversal can will allow for the creation of a working set in cache that can minimize
capacity misses. Recent publications [48, 73] have examined these and many other optimizations in the context
of CPUs and GPUs.

5.4 Gradient

The gradient (Vu) operates on a scalar field, but unlike the Laplacian, it produces a (Cartesian) vector field
that points in the direction of steepest ascent at that point.

5.4.1 Formal Mathematical Definition

The gradient is defined as Vu = %%4— %34— g—;‘l% where %,j’, and k point in the x, y, and z directions respectively.

To implement the gradient via finite differencing, for each desired time t, we sweep over all ¢, j, and k performing
one of the following finite differences.

Backward Central Forward
(Wi gkt — Win1,jk,t) ?(Uiﬂ,j,k,t = Ui-1jk,t) Uitk — Wigik,t)
ﬂ(ui,j,k,t - Ui,j—l,k,t) §(Ui,j+1,k,t - Ui,jfl,k,t) ﬂ(ui,j+1,k,t - ui,j,k,t)
V(Wi gkt — Wi jk—1,t) %(Ui,j,kJrl,t — Ui jk—1,t) V(Wi j k1,6 — Wi g kot)

Table 5.3: Gradient (Vu; ;) via first order backward, central, and forward finite difference method. If the

discretization is uniform in x,y,z, then we define a = g =~ = %

5.4.2 Scalable Problem Definition

One may reuse the scalable problem definition created for the partial derivatives. The analytic solutions are
vectors formed by concatenating the three partial derivatives displayed in 5.2.

5.4.3 Verification Scheme

One may reuse the verification scheme created for the partial derivatives.
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5.4.4 Functional Reference Implementation

See Algorithm 16.

5.4.5 Literature Survey of Optimizations

see Section 5.3.4

5.5 Divergence
Divergence (V - F') measures the outflow or inflow (a scalar quantity) at each point in a vector field.

5.5.1 Formal Mathematical Definition

The divergence is defined as VF = %F a4t %F g+ %F -k. To implement the divergence via finite differencing,
for each desired time ¢, we sweep over all i, 7, and k& performing one of the following finite differences.

Backward Central Forward
(Fzijpe — Frio1jme)+ %(F%H,j,m = Fai1 k)t (Fwir e — Foijee)+
B(FYi gt — Fij—1,ke)+ S(Fyi i1kt — Fyij—1k,:)+ B(FYi 41,k — Fijre)+
Y(Fzijgt — Fzijr—14t) T(Fzijrsre — Fzijr—1.) Y(Fzijks1,e — Fzijrt)

Table 5.4: Divergence (V - F; ;1) via first order backward, central, and forward finite difference method. If

the discretization is uniform in x,y,z, then we define o« = =y = %

5.5.2 Scalable Problem Definition

One may reuse the scalable problem definition created for the partial derivatives.

5.5.3 Verification Scheme

Because divergence operates on a vector field, a modified set of functions is used for testing. Since divergence-
free vector fields are common in applications, one such field is included. As above, T is a toughness parameter
which influences the numerical challenges of the problem.

5.5.4 Functional Reference Implementation

See Algorithm 16.

5.5.5 Literature Survey of Optimizations

see Section 5.3.4

5.6 Curl

Where as divergence measured the outflow or inflow at each point in a vector field, curl (V x F') quantifies the
rotation of a vector field. As such, curl takes a vector field and produces a vector field as the result.
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Um(l"y,z) uy(xv:%'z) uz(x,y,z) V-u

sin(tx) sin(27y) sin(47z) d7cos(tx) + 21cos(21y) + 47cos(47z)
TXY TTYZ —TYz — %TI'ZQ 0
eTe eQTy e4‘rz ,7_(67':1: + 2627'y +4€4TZ)

Table 5.5: Test functions for Divergence and exact solutions to the continuous problem. Sampling will provide
a check against the finite difference solution.

5.6.1 Formal Mathematical Definition

The divergence is defined as VX F = (881; = _ a;;y Yi+( O 88% )7+ ( 881;1‘ - %)l%. To implement the curl via finite

differencing, for each desired time ¢, we sweep over all 7, j, and k performing one of the following finite differences.

Backward difference:

B(Fzijk — Fzij—1k) = Y(FYijk — FYijr-1)
VXFijne= |YFzijr — Frijr-1) — a(Fzjr — Fzi1k)
L (Fyijk — Fyic1jk) — B(F2ijr — Frij1k)
Central difference:
g(FZi,jJrl,k —Fzijan) = 3(FYijk1 — Fyijr-1)
VXFijre=|3Fzijrer — Frijr—1) — 5 (F 216 — Fric14k)

%(Fyiﬂ,j,k - F%‘A,j,k) - §(F$i,j+1,k - F%‘,jq,k)
Forward difference:
Fzijiik — Fzigr) = v(FYijk+1 — Fyijk)
VXFijre= | YF2ijrt1 — Fvijr) — a(Fzig1r0 — Fzigr)
| (FYiv1k — Fyijr) — B(Fzi jrie — Fog )
When the discretization is uniform in x,y,z, then we define a = =~ =

a

1
R

5.6.2 Scalable Problem Definition

One may reuse the scalable problem definition created for the partial derivatives.

5.6.3 Verification Scheme

Because curl operates on a vector field and outputs a vector field, a modified set of functions is used for testing.
Since conservative vector fields are common in applications, one such field is included. As above, T is a toughness
parameter which influences the numerical challenges of the problem.

5.6.4 Functional Reference Implementation

See Algorithm 16.

5.6.5 Literature Survey of Optimizations

see Section 5.3.4
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Um(%y,z) uy(x7y’z) uz(x’yaz) V xu

sin(rz) sin(27x) sin(4ty) (47cos(4ty), Teos(Tz), 2Tcos(2x))
Ta?yz 3723 sy’ (0,0,0)
eT? 627:1: e4‘ry (47_e4fry, Te'rz’ 27_627'1)

Table 5.6: Test functions for Curl and exact solutions to the continuous problem. Sampling will provide a
check against the finite difference solution.

5.7 Laplacian

The laplacian operator (V2u) is commonly conceptualized as the divergence of the gradient (V-Vu) or alternately

82 82 82 . . . . . . . . .
as gz + 6775 + g5z This operator is commonly found in a wide variety of partial differential equations.

5.7.1 Formal Mathematical Definition

As with the partial derivatives, we sweep over all 4, j, and k performing the laplacian operator at each point.
Using the central finite difference method the Laplacian is simply:

V2t = a(Wiz1jet + Uig1gke) T BWi -1k + Wijrtke) + Y (Wigk—1, + Wijkt1,e) — 2 + B+ )ikt
Please note, if the discretization is uniform in x,y,z, then we redefine a = g =~ = %

5.7.2 Scalable Problem Definition

One may reuse the scalable problem definition created for the partial derivatives.

5.7.3 Verification Scheme

One may reuse the verification scheme created for the partial derivatives. The analytic solutions to the evaluating
the Laplacian of each function is in the table below.

u(zx,y, z) V2u

sin(rx)sin(2ry)sin(4rz) =217 (sin(Tx)sin(2Ty)sin(47z))

Tryz + (Tay2)? + (tTy2)3 272(1 + 3rzyz) (z2y? + 2222 + y?2?)

eTIYZ 7_2 ($2y2 + 1‘222 + y222)€‘r.tyz

Table 5.7: Test functions for Laplacian and exact solutions to the continuous problem. Sampling will provide
a check against the finite difference solution.
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5.7.4 Functional Reference Implementation

See Algorithm 16.

5.7.5 Literature Survey of Optimizations

see Section 5.3.4

5.8 Solve Discretized PDE (forward/explicit)

Partial differential equations form the core of many scientific computing applications. Broadly speaking, they
are built upon the differential operators discussed in the preceding sections. The following sections use the
canonical heat equation (%1: = CV?u) as a motivating example to explore alternate approaches to solving this
parabolic PDE. We commence with an explicit method for evaluation of this PDE.

5.8.1 Formal Mathematical Definition

In the explicit solution, we use the forward difference for the time derivative that we discussed in Section 5.3,
and the central difference laplacian from Section 5.7. Simply put, to follow the time evolution of this PDE, we
evaluate ¥ = A - ¥ where A is dtV? — I, ¥ = Grid(i, j, k,t), and § = Grid(i,j, k,t + 1). Clearly, we must start
with the initial conditions (u; j k., ), but simply replace the matrix-vector product with a stencil sweep.

Alternately, the grid may be transfered to a vector and matrix-vector products may still be used. This scheme
is numerically identical to using stencil sweeps, but different in data-structure. The matrix version requires the
matrix to be read multiple times, rather than only two constants for the stencil method. As such memory traffic
for the matrix-based is higher and thus not preferred. Both the stencil- and matrix-based versions are included
in the reference implementations.

5.8.2 Scalable Problem Definition

For our test problem we select the region of interest to be the three dimensional unit cube and set C' = 1.
Initial conditions are u(x,y, z,0) = sin(2nx)sin(2ny)sin(27wz). Boundary conditions are homogeneous Dirichlet
boundary conditions, that is, zero on all boundaries for all times ¢. Like the previous sections, we may choose
whatever spatial discretization we desire. The time discretization may also be chosen to any desired value.
The explicit method to solve such an equation is only conditionally stable, so the user should select the spatial
and time discretization such that dt/h? < 1/6 to satisfy the Courant-Friedrichs-Lewy condition for numerical
stability. See [88], chapter 20 for further description of this condition.

5.8.3 Verification Scheme

The analytic solution to this equation is u(z,y,z,t) = e 127 tsin(2mx)sin(2my)sin(2rz). Given this exact
solution, one may sample it using the finite difference method, and then by the same scheme as we verified the

derivatives, we may verify the heat equation.

5.8.4 Functional Reference Implementation

Algorithm 16 is used to evaluate the operator at each timestep. In the matrix based version, the evaluation of
the differential operator at all timesteps can be evaulated with a single call to the Matrix-Powers kernel. See
Chapter 4.

5.8.5 Literature Survey of Optimizations

See Section 5.3.4. Additionally, temporal blocking has become a valuable approach to further improving local-
ity [102].
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5.9 Solve Discretized PDE (backdward/implicit) using CG

Rather than the forward difference time derivative discussed in the previous section, we may solve the same
equation using a backwards time derivative. The result is that at each time step, we must solve a system of
linear equations in the form A - # = b where A is the Helmholtz operator (—dtV? + 1), & = Grid(i, j, k,t + 1),
and b = Grid(i, j,k,t). We may solve this system of linear equations using the conjugate gradient method
discussed in Chapter 4 with the caveat that the matrix-vector products may be replaced with stencil sweeps.

As in the explicit method, the grid may be transferred to a vector and matrix-vector products may still be
used inside the CG solve. As above, this adds memory traffic and is not preferred. Both versions are included
here as well.

5.9.1 Formal Mathematical Definition
Each timestep in Chapter 4.

5.9.2 Scalable Problem Definition

One may use the same problem generation scheme as the explicit solution (see Section 5.8).

5.9.3 Verification Scheme

One may use the same verification scheme as the explicit solution (see Section 5.8).

5.9.4 Functional Reference Implementation

See Section 4.6.4 for discussion of the reference implementation of CG. See the source code download for details
specific to the heat equation solve, including replacing the SpMV operation with stencil operations.

5.9.5 Literature Survey of Optimizations

A survey of optimizations will be included in a subsequent revision of this report.

5.10 Solve Discretized PDE (backward/implicit) using multigrid

Rather than using conjugate gradient to solve the implicit PDE of the previous section, we may use a multigrid
method. Multigrid methods use a set of grids, discretized to different widths, to efficiently solve the linear
systems. They are effective for the system defined for the implicit method for the Heat Equation, as well as for
Poisson’s equation and others. The following description is taken from [51] with permission:

“In contrast to other iterative schemes that we have discussed so far, multigrid’s convergence rate is indepen-
dent of the problem size N, instead of slowing down for larger problems. As a consequence it can solve problems
with n unknowns in O(n) time or for a constant amount of work per unknown. This is optimal, modulo the
(modest) constant hidden inside the O(:)...

Multigrid uses coarse grids to do divide-and-conquer in two related senses. First, it obtains an initial solution
for an N-by-N grid by using an (N/2)-by-(N/2) grid as an approximation, taking every other grid point from the
N-by-N grid. The coarser (N/2)-by-(IN/2) is in turn approximated by an (N/4)-by-(N/4), and so on recursively.
The second way multigrid uses divide-and-conquer is in the frequency domain. This requires us to think of the
error as a sum of eigenvectors, or sine-curves of different frequencies. Then, intuitively, the work that we do
on a particular grid will attenuate the error in half of the frequency components not attenuated on the coarser
grids. In particular, the work performed on a particular grid—averaging the solution at each grid point with its
neighbors, a variation of Jacobi’s method—-makes the solution smoother, which is equivalent to getting rid of the
high-frequency error.”
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5.10.1 Formal Mathematical Definition

Multigrid solvers rely on the following three core operations.

First, a relaxation operator. This is usually an iterative method which solves the linear system. Standard
Gauss-Seidel is used here, which is an averaging with nearest neighbors weighted according to the associated
differential operators. This is but one standard method which dampens the high-frequecy error as discussed
above.

Second, a restriction operator. This operation transfers the current problem from an N? grid (because our
model problem is in three dimensions) to an (N/2)3 grid. The restriction operator selected is the injection
operator, with which the coarse grid takes the value of the fine grid at the equivalent point in space.

Third, an interpolation operator. This operation transfers the current problem from an (N/2)? grid to an
N3 grid. The interpolation operator used performs a weighted, nearest neighbor average of points. For the three
dimensional model problem, this scheme first copies existing points, then averages to fill in rows, then columns,
then entire planes. Each average is computed between two nearest neighbor points, but for the columns and
planes, their nearest neighbors are themselves averages, making the average in effect of increasingly more points
of the coarse grid.

These methods are then put together in the following way, called the V-Cycle:

1: for i = 2 to maxDepth do

2 Apply the relaxation operator to the current grid i — 1.

3 Apply the restriction operator to the residual and right hand side.

4:  Assign the restricted residual and right hand side to the next, more coarse, grid .
5. end for

6: Perform a full solve on the remaining residual at the coarsest level maxzDepth.

7. for ¢ = maxDepth to 2 do

8 Apply the interpolation operator on grid 7 to get the fine grid and right hand side.
9:  Add the fine grained approximation to the residual to the existing next, more fine, grid i — 1.
10:  Apply the relaxation operator to the next, more fine, grid ¢ — 1.

11: end for

Algorithm 17: Simplified description of V-Cycle

Both [51] and [36] contain more detail and explicit instructions for implementing such methods, along with
information on solving a variety of differential equations and applications.

5.10.2 Scalable Problem Definition

One may use the same verification scheme as the explicit solution.

5.10.3 Verification Scheme

One may use the same verification scheme as the explicit solution.

5.10.4 Functional Reference Implementation

Following are simplified reference implementations of the restriction and interpolation operators. For the refer-
ence implementation of the relaxation scheme, Gauss-Seidel, and the V-Cycle see the source download.

function coarse = fineToCoarse(coarse, fine)

% Injection operator from fine grid to coarse grid.

% If coarse grid is size n in each dimension, fine grid will be of size 2*n-1.

)

% Input:

% grid coarse Preallocated 3D coarse array of length (n + 1) / 2 in each dimension
% grid fine 3D fine array of length n in each dimension (which is computed here)
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% Output:
yA grid coarse 3D array formed using injection operator from fine grid

[n n n] = size(fine) ;
coarse = fine(1:2:n, 1:2:n, 1:2:n);

end

function fine = coarseToFine(coarse, fine)

% Converts a coarse grid to a fine grid.
% Uses an averaging operator.
% If coarse grid is size n in each dimension, fine grid will be of size 2*n-1.
)
%  Input:
% grid coarse 3D coarse array of length n in each dimension (which is computed here)
% grid fine Preallocated 3D fine array n of length 2*%n - 1 in each dimension
%
% Output:
% grid fine 3D array that is the linear interpolation of the coarse grid
[n n n] = size(coarse);

fineN = 2%*n-1;

%copy existing points first
for i=1:n
for j = 1:n
for k = 1:n
fine(2%i - 1, 2%j - 1, 2xk - 1) = coarse(i,j,k);
end
end
end

% average odd numbered columns in odd numbered planes in x direction
for i=2:2:fineN-1
for j = 1:2:finelN
for k = 1:2:fineN
fine(i,j,k) = .5 * (fine(i-1,j,k) + fine(i+1,j,k));
end
end
end

% average even numbered columns in odd numbered planes in y direction
for i=1:fineN
for j = 2:2:fineN-1
for k = 1:2:fineN
fine(i,j,k) = .5 * (fine(i,j-1,k) + fine(i,j+1,k));
end
end
end

% average entire even numbered planes in z direction
for i=1:fineN
for j = 1:fineN
for k = 2:2:fineN-1
fine(i,j,k) = .56 * (fine(i,j,k-1) + fine(di,j,k+1));
end
end
end
end
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5.10.5 Literature Survey of Optimizations

Both [51] and [36] contain many more details about the performance and applicability of multigrid methods.
Both include extensive lists of references including many on optimizations.
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Chapter 6

Finite Volume Methods on Structured
Grids

In this section we discuss the numerical solutions to partial differential equations. As the title suggests, we’'ve
made two restrictions for this “motif”: all grids are structured, and the numerical solutions are attained via
the finite volume method. We will examine the fundamental partial derivatives, the fundamental differential
operators including Laplacian(V?u), Divergence(V - F), Gradient(Vu), and Curl(V x F), as well as approaches
to solving partial differential equations.

These kernels will be included in a future release of this testbed.
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Chapter 7

Spectral Methods

Spectral methods, which are schemes based, one way or another, on the fast Fourier transform (FFT), are used
heavily in speech processing and, more generally, in the larger world of digital signal processing. Cell phones are
just one example of a modern consumer technology that employs these methods. However, spectral methods
and FFTs are useful in an even broader range of scientific computations that have little to do with signals, such
as convolutions and Poisson partial differential equations.

7.1 Lexicon/Terminology for Motif

Typically, a sampling method is performed on a continuous function. The result is a discrete data set (vector)
upon which transformations are performed.

7.2 1D Fast Fourier Transform (FFT)

The 1D Fast Fourier Transform (FFT) in is merely a fast algorithm for evaluating the discrete Fourier transform
(DFT) on a 1D input.

7.2.1 Formal Mathematical Definition

On a one-dimensional complex vector (xg,x1,- - z,—1) of length n, the DFT is defined as

n—1
Xy = sz672”ijk/”, 0<k<n
§=0
n—1
= Z xj [cos(—2mijk/n) + isin(—2mwijk/n)], 0<k<n. (7.1)
§=0

If one were to compute an n-point 1-D DFT using (7.1), the total cost would be 2n? operations, even if we
presume that all the exponential factors had been precomputed. Using any of the known FFT algorithms
reduces this cost to 5nlogy n, at least in the case that n is a power of two. If x is purely real, then there exist
simple transformations that permit the DFT to be computed on a complex vector of length n/2 (and these
transformations also work if the DFT is being computed with an FFT). See [21]

The above formulas define what are normally referred to as “forward” DFTs. The formulas for the “inverse”
DFT are the same as the above, except the sign of the exponent is positive rather than negative, and a 1/n
factor is placed in front of the summation sign.

7.2.2 Scalable Problem Definition

Compute a 1-D complex-to-complex FFT of as large a power-of-two size as possible on 64-bit IEEE data. The
initial data is generated by a pseudo-random number generator of your choice.
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7.2.3 Verification Scheme

The result of forward and inverse FFT must match the original data with a RMS error of no greater than 10719,
More rigorous tests are provided subsequent kernels which use the FFT as a sub-kernel.

7.2.4 Functional Reference Implementation

There are many versions of the FFT algorithm. They go by names such as “decimation in time,” “decimation
in frequency,” “Gentleman-Sande FFT,” “Stockham FFT,” “Pease’s FFT,” and others. One challenge in com-
puting the FFT derives from the fact that when computing an FFT on data dimensioned by a power of two (by
far the most common kind), most FFT algorithms access data by power-of-two strides. Such accesses typically
result in poor performance both on vector computers and also on cache-memory systems. Another challenge is
in performing the “bit-reversal” permutation required in some FFTs.

The best scheme for many cache memory systems is known as the “four-step FFT,” which in effect performs
the 1-D FFT as a 2-D FFT (except for some exponential factors) [20]. Although it has been “discovered” several
times in the past decade or two, this algorithm was actually first presented over forty years ago in a paper by
Gentleman and Sande [63, pg. 569]. This scheme is as follows. Let n = ning be the size of the transform. Note
that n does not necessarily need to be a power of two, although as with all FFT algorithms it is most efficient
when n is a power of two. This particular algorithm is most efficient when n; and no are chosen as close as
possible to \/n. In the following and hereafter, matrices will be assumed to be stored in memory columnwise
as in the Fortran language. The FFT of n complex input data values can then be obtained by performing the
following four steps:

1. Perform n; simultaneous no-point FFTs on the input data considered as a ny X ng complex matrix.

2. Multiply the resulting data, considered as a n; x ny matrix A;, by e 2migk/n

3. Transpose the resulting n; X no complex matrix into a ne X n; matrix.

4. Perform no simultaneous ni-point FFTs on the resulting no X n; matrix.

The individual 1-D FFTs, which typically fit in a cache memory, may in turn be performed by any of several
schemes, such as Stockham’s algorithm [19, 99].

Several important features of this algorithm should be noted: first of all, note that both of the simultaneous
FFT steps can be performed using exclusively unit stride data access, which is optimal on virtually any computer
system. Secondly, this algorithm produces an ordered transform (provided the simultaneous FFTs are ordered).
It is not necessary to perform a bit reversal permutation, which is inefficient on many advanced computer
systems. Finally, note that only three passes through the external data set are required to perform this algorithm.
The second step can be performed on a block of data after the first step, before it is returned to memory.

A good reference for the FFT is Van Loan’s book [99].

7.2.5 Literature Survey of Optimizations

AMD, Apple, Cray and IBM, among other vendors, offer highly tuned FFT libraries [5, 44, 70]. There are
also some excellent self-tuning FFT libraries, notably the FFTW [58] library, which run on a wide variety of
modern-day systems. These libraries make it simple for scientists to achieve very high performance on FFTs.
For example, on a single core of a 3.2 GHz Xeon-based MacPro, FFTW performs a 224-point complex 64-bit
FFT at 1.28 Gflop/s, and the Apple FFT package runs this calculation at 2.83 Gflop/s [44].

A good reference for the DFT is the book by Briggs and Henson [35]. A good reference for the FFT is Van
Loan’s book [99].

7.3 3D Fast Fourier Transform (FFT)

The 3D FFT is a simple extension of the previous section to a 3D data set. This method can be modified to
become an efficient implementation of a 1D FFT on very large datasets.
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7.3.1 Formal Mathematical Definition

The DFT of a three-dimensional array (%, 0 < j <ni, 0 <k < ng, 0 <1 < ng) of size n = nynang is defined
as

n3 N2 N1

Xpgr = ZZijyk’le_%ijklpqr/ﬂ 0<p<ng,0<qg<ny,0<r<ng. (7.2)
1=0 k=0 j=0

This can be computed by taking the FFT along each index in sequence.

7.3.2 Scalable Problem Definition

Compute a complex-to-complex FFT a three dimensional cube where each dimension is as large a power-of-two
size as possible. Use the same random number generators as the 1-D case.

7.3.3 Verification Scheme

The result of forward and inverse FFT must match the original data with a RMS error of no greater than 10710,

7.3.4 Functional Reference Implementation

The reference implementation provided uses a straight forward organization and calls the associated one di-
mensional routines. Data for each individual FFT is copied into a contiguous section of memory before the one
dimensional routine is called.

7.3.5 Literature Survey of Optimizations

See previous section.

7.4 Perform Convolution via FFT

Convolutions arise in a surprisingly large and diverse set of applications. For example, consider the multiplication
of two high-precision integers © = (zg,21, "+ ,Zn—1) and y = (Yo,Y1, " ,Yn—1), Where each z; is an integer in
the range [0,2° — 1], and collectively represent the bn-long binary expansion of x, and similarly for y. Note
that from elementary school arithmetic, if we defer for the time being the release of carries, then the 2n-long
multiplication “pyramid” z resulting from multiplying = and y is merely

z = (xoYo, oY1 + T1Yo, Toy2 + T1Y1 + T2Yo, *+ » Tn—2Yn—1 + Tn—1Yn—2; Tn—1Yn—1)- (7.3)

But this is nothing more than the “linear” or “acyclic” convolution A(z,y) of the vectors x and y, which can
easily be written as a circular convolution by first extending x and y to length 2n by padding with zeroes, and
then writing

2n—1

o= Y wiykj, 0<k<2n (7.4)
=0

where the subscript k — j is interpreted as k — j +2n if £ — j < 0.
A related concept is the correlation of two vectors:

n—1

zp = Z zjYi+k, 0<k<n (7.5)
j=0

where the subscript j + k is interpreted as j + k —n if j + k > n.
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7.4.1 Formal Mathematical Definition

As mentioned above, the circular convolution C(x,y) of two n-long vectors x = (zg, 21, - ,Zn—1) and y =
(Y0,Y1,"** ,Yn—1) is defined as the vector
n—1
Cr(z,y) = ijyk,j, 0<k<n (7.6)
§=0

where the subscript k — j is interpreted as k — j +n if K — j < 0. The linear or acyclic convolution A(x,y) of x
and y is defined as the vector

2n—1

Ap(z,y) = Z Tiyp—j, 0<k<2n (7.7)
§=0

where the subscript k£ — j is interpreted as k — 7 4+ 2n if k — j < 0, and where it is understood that z; = yr = 0
for n < k < 2n. In other words, if we “pad” the n-long input vectors x and y with n zeroes each, then the
acyclic convolution of x and y is simply the 2n-long circular convolution of the extended x and y vectors.

The reason that convolutions are of interest in this context is that FFTs can be used to dramatically
accelerate the computation of a convolution. In particular, if we denote by F(x) the forward discrete Fourier
transform of x and F~!(z) the inverse discrete Fourier transform of , then the convolution theorem says that
that circular convolution C(z,y) is

Clayy) = F'(F@)F()). (7.8)

As before, if the input vectors are purely real rather than complex, simple transformations exist that permit
these operations to be done twice as fast.

7.4.2 Scalable Problem Definition

Compute the 1-D real acyclic convolution of two large power-of-two sized vectors, where the initial data are
pseudorandomly generated integers in the range [0,2° — 1] for some integer b, where b is chosen as large as
possible so that the final acyclic convolution data are exactly represented as 64-bit IEEE values (this normally
means that 2b + log, n < 53).

7.4.3 Verification Scheme

The accuracy is verified by two comparisons. When the convolution of integer data is computed, output data
should be integers within a rounding tolerance, so that property is checked on the full output data. One potential
vulnerability to this scheme is to use data that is too large to be exactly represented in double precision. As
such, the bound above is checked by the verification scheme, and exceeding the bound will result in failure.

To ensure that the answer is not simply random integers, the first ten elements of the convolution are
calculated naively and compared with the output of the FFT based algorithm. Any discrepancy here causes
failure.

7.4.4 Functional Reference Implementation

The implementation provided uses real-to-complex and complex-to-real ffts for evaluating the convolution. The
details of packing data for these algorithms are available in [21].

7.4.5 Literature Survey of Optimizations

See previous section.
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7.5 Solve Discretized PDE via FFT

In this section, we solve the dicretized Heat Equation as described in Chapter 5 by transforming it into the
frequency domain, performing the requisite operations, and then returning to the spatial domain. This method
differs from previous methods to numerically solve the heat equation in that no nearest-neighbor or finite-
differencing operations are performed.

7.5.1 Formal Mathematical Definition

The following description is modified from [23]. Select the problem sizes such that the number of internal points
of the grid in each dimension m,n and p are all powers of two. In particular, parameter values and names are
modified and information that is irrelevant to this testbed is omitted.

“Consider the PDE

Ou(z,t) 9
5 = Vou(z,t)

where x is a position in 3-dimensional space. When a Fourier transform is applied to each side, this equation
becomes

= —4r?|z|%v(z,t)
where v(z,t) is the Fourier transform of w(z,t). This has the solution
v(z,t) = 674”2|2|2tv(z, 0)

Now consider the discrete version of the original PDE. Following the above, it can be solved by computing
the forward 3-D discrete Fourier transform (DFT) of the original state array w(z,0), multiplying the results by
certain exponentials, and then performing an inverse 3-D DFT.

Compute the forward 3-D DFT of U, using a 3-D fast Fourier transform (FFT) routine, and call the result
V. Set t = dt. Then compute

Wijn = e-47r2(52+32+122)tv;7j7k
where 7 is defined as i for 0 < i < m/2 and i —m for m/2 < i < m. The indices j and k are similarly defined
with n and p. Then compute an inverse 3-D DFT on W, using a 3-D FFT routine, and call the result the array
X. Increment ¢ by dt. Then repeat the above process, from the computation of W through the incrementing
of ¢, until the step ¢t = tSteps has been completed. The V array and the array of exponential terms for ¢t = dt
need only be computed once. Note that the array of exponential terms for ¢ > 1 can be obtained as the ¢-th
power of the array for ¢t = dt.”

7.5.2 Scalable Problem Definition

The problem definition is the same as section 5.8.

7.5.3 Verification Scheme

The verification scheme is the same as section 5.8

7.5.4 Functional Reference Implementation

The following reference implementation in Matlab is a simplification of the reference implementation in the
source code. Specifically, it uses the library routine for the 3D FFT, whereas the code gives the user a choice
between library or our implementation.
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function soln = solve3DHeatSpectral(dt, tSteps, 1, h)

%  Spectral method for Heat Equation.

%  input:

% double dt Time step for solve

A int tSteps Total number of timesteps to perform

% double 1 Width of cube, same on all dimensions

% double h Grid height

h

%  output:

% 4D real soln Solution to heat equation. indexed (x,y,z,t)

f = @(x,y,z) sin(2xpi*x) * sin(2*pixy) * sin(2*pix*z);

N=1/h - 1;
M = tSteps ;
soln = zeros(N,N,N,M); % don’t include the ghost zones here

Yiset initial conditions
initTemp = initGrid3D(f, h, 1, 1, 1);

%remove ghost zones
initTemp = initTemp(2:N+1, 2:N+1, 2:N+1);
soln(:,:,:,1) = initTemp(:,:,:);

initFFT = fftn(soln(:,:,:,1));

%compute the exponential lookup table for advancing data
twiddles = zeros(N,N,N);

for k = 0:N-1
for j = 0:N-1
for i = 0:N-1

if 1 < N/2
iBar = i;
else
iBar = i-N;
end
if j < N/2
jBar = j;
else
jBar = j-N;
end
if k < N/2
kBar = k;
else
kBar = k-N;
end

twiddles(i+1l, j+1, k+1) = exp(-4*pi~2 * (iBar~"2 + jBar"2 + kBar~2));
end
end
end
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for j = 2:tSteps
t =t + dt;
soln(:,:,:,j)
soln(:,:,:,3)
end

(twiddles .~ t) .* initFFT ;
ifftn(soln(:,:,:,3)) ;

7.5.5 Literature Survey of Optimizations

See previous section.
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Chapter 8

Particle-Particle Methods

Particle methods simulate the time evolution of discrete entities (particles). These particles can anything be
atomic nuclei or molecules in a gas, to planets or superclusters of galaxies.
8.1 Lexicon/Terminology for Motif

The particles may have physical characteristics like mass, charge, position, velocity, spin, etc... and interact with
each other via a force function based on the these characteristics. Once the force has been calculated, particles
may be accelerated and moved the appropriate distance given the time step. Typical particle simulations iterate
through time in a series of force calculation and push phases.

8.2 2D/3D N? Direct

This kernel models the 2D /3D direct all-to-all particle simulation by calculating forces, accelerating particles,
and moving them.

8.2.1 Formal Mathematical Definition

Given a system of N particles with masses {my, ..., my}, Cartesian positions {21, ...,2% } and Cartesian veloc-
ities {v1,...,vun}, we wish to model the time evolution of such particles given the introduction of an interaction
force {F1,...,Fy} applied to each particle. Two forces are included. The first is a simple gravitational force:

al m;m,;

F, = -G ———2L— (7 —
=2 O ap @ )
j=1
JFi

As the code iterates through time, it first calculates all F‘i, then uses them to accelerate and move particles:
0 =0, + LLAL, & = @ + 0 AL

my

;
The second is a repulsive force which is zero outside a certain range:

N

Fy=Y (@ — )
i=1
i

where «; ; is defined according to the following parameters:

¢ =001, miny=c/100, 2= mas(|F} — &, minr?), =2

1—<

0 il -3 > e
o; = c
- - otherwise

r2
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8.2.2 Scalable Problem Definition

Set particles randomly in the desired region, with random initial velocities. Move the system through the desired
number of time steps as described in the previous section.

8.2.3 Verification Scheme

Since full solutions to the n-body problem are not known, this kernel is difficult to verify analytically. However,
coding for the naive method is straightforward and visualizations for associated data are available for a heuristic
check. One such visualizer is available at [46]. The two dimensional reference implementations output data in
a format compatible with this visualizer.

8.2.4 Functional Reference Implementation

We direct the reader to the source code included with this report.

8.2.5 Literature Survey of Optimizations

A survey of optimizations will be included in a subsequent revision of this report.

8.3 2D/3D N? Direct (with cut-off)

In many physical simulations, some forces are near field (they can be ignored at sufficiently long distances)
while others are far field (cannot be ignored). This kernel assumes the force can be ignored when the particle is
outside the specified cutoff distance. As such, this cut-off in distance would allow one to reduce the numerical
complexity of many calculations from O(N?) by a factor of around the size of the region over cutoff distance