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Abstract

The digits of π have intrigued both the public and research mathematicians from the
beginning of time. This article briefly reviews the history of this venerable constant, and
then describes some recent research on the question of whether π is normal, or, in other
words, whether its digits are statistically random in a specific sense.

1 Pi and its day in modern popular culture

The number π, unique among the pantheon of mathematical constants, captures the fascination
both of the public and of professional mathematicians. Algebraic constants such as

√
2 are easier

to explain and to calculate to high accuracy (e.g., using a simple Newton iteration scheme). The
constant e is pervasive in physics and chemistry, and even appears in financial mathematics.
Logarithms are ubiquitous in the social sciences. But none of these other constants has ever
gained much traction in the popular culture.

In contrast, we see π at every turn. In an early scene of Ang Lee’s 2012 movie adaptation
of Yann Martel’s award-winning book The Life of Pi, the title character Piscine (“Pi”) Molitor
writes hundreds of digits of the decimal expansion of π on a blackboard to impress his teachers
and schoolmates, who chant along with every digit.1 This has even led to humorous take-offs
such as a 2013 Scott Hilburn cartoon entitled “Wife of Pi,” which depicts a 4 figure seated next
to a π figure, telling their marriage counselor “He’s irrational and he goes on and on.” [22].
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the Director, Office of Computational and Technology Research, Division of Mathematical, Information, and
Computational Sciences of the U.S. Department of Energy, under contract number DE-AC02-05CH11231.
†Centre for Computer Assisted Research Mathematics and its Applications (CARMA), University of New-

castle, Callaghan, NSW 2308, Australia. Email: jonathan.borwein@newcastle.edu.au.
1Good scholarship requires us to say that in the book Pi contents himself with drawing a circle of unit

diameter.
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This attention comes to a head each year with the celebration of “Pi Day” on March 14,
when, in the United States with its taste for placing the day after the month, 3/14 corre-
sponds to the best-known decimal approximation of Pi (with 3/14/15 promising a gala event
in 2015). Pi Day was originally founded in 1988, the brainchild of Larry Shaw of San Fran-
cisco’s Exploratorium (a science museum), which in turn was founded by Frank Oppenheimer,
the younger physicist brother of Robert Oppenheimer, after he was blacklisted by the U.S.
Government during the McCarthy era.

Originally a light-hearted gag where folks walked around the Exploratorium in funny hats
with pies and the like, by the turn of the century Pi Day was a major educational event in
North American Schools, garnering plenty of press.2 In 2009, the U.S. House of Representatives
made Pi Day celebrations official by passing a resolution designating March 14 as “National Pi
Day,” and encouraging “schools and educators to observe the day with appropriate activities
that teach students about Pi and engage them about the study of mathematics.” [23].3

As a striking example, the March 14, 2007 New York Times crossword puzzle featured
clues, where, in numerous locations, π (standing for PI) must be entered at the intersection of
two words. For example, 33 across “Vice president after Hubert” (answer: SπRO) intersects
with 34 down “Stove feature” (answer: πLOT). Indeed 28 down, with clue “March 14, to
mathematicians,” was, appropriately enough, PIDAY, while PIPPIN is now a four-letter word.
The puzzle and its solution are reprinted with permission in [15, pp. 312–313].

π mania in popular culture Many instances are given in [14]. They include:

1. On September 12, 2012, five aircraft armed with dot-matrix-style skywriting technology
wrote 1000 digits of π in the sky above the San Francisco Bay Area as a spectacular and
costly piece of piformance art.

2. On March 14, 2012, U.S. District Court Judge Michael H. Simon dismissed a copyright
infringement suit relating to the lyrics of a song by ruling that “Pi is a non-copyrightable
fact.”

3. On the September 20, 2005 edition of the North American TV quiz show Jeopardy!, in
the category “By the numbers,” the clue was “‘How I want a drink, alcoholic of course’
is often used to memorize this.” (Answer: What is Pi?).

4. On August 18, 2005, Google offered 14,159,265 “new slices of rich technology” in their
initial public stock offering. On January 29, 2013 they offered a πmillion dollar prize for
successful hacking of the Chrome Operating System on a specific Android phone.

2Try www.google.com/trends?q=Pi+ to see the seasonal interest in ‘Pi’.
3This seems to be the first legislation on Pi to have been adopted by a government, though in the late 19th

century Indiana came embarrassingly close to legislating its value, see [12, Singmaster, Entry 27] and [14]. This
Monthly played an odd role in that affair.

2

www.google.com/trends?q=Pi+


5. In the first 1999 Matrix movie, the lead character Neo has only 314 seconds to enter the
Source. Time noted the similarity to the digits of π.

6. The 1998 thriller “Pi” received an award for screenplay at the Sundance film festival.
When the authors were sent advance access to its website, they diagnosed it a fine hoax.

7. The May 6, 1993 edition of The Simpsons had Apu declaring “I can recite pi to 40,000
places. The last digit is 1.” This digit was supplied to the screen writers by one of the
present authors.

8. In Carl Sagan’s 1986 book Contact, the lead character (played by Jodie Foster in the
movie) searched for patterns in the digits of π, and after her mysterious experience sought
confirmation in the base-11 expansion of π.

With regards to item #3 above, there are many such “pi-mnemonics” or “piems” (i.e.,
phrases or verse whose letter count, ignoring punctuation, gives the digits of π) in the popular
press [14, 12]. Another is “Sir, I bear a rhyme excelling / In mystic force and magic spelling
/ Celestial sprites elucidate / All my own striving can’t relate.” [13, pg. 106]. Some are very
long [12, Keith, Entry 59, p. 560–61].

Sometimes the attention given to π is annoying, such as when on 14th, August 2012, the U.S.
Census Office announced the population of the country had passed exactly 314,159,265. Such
precision was, of course, completely unwarranted. Sometimes the attention is breathtakingly
pleasurable.4 5

Poems versus piems While piems are fun they are usually doggerel. To redress this, we
include examples of excellent π poetry and song.6 In Figure 1 we present the much anthologised
poem “PI,” by Polish poet Wislawa Szymborska (1923-2012) who won the 1996 Novel prize
for literature [29, pg. 174]. In Figure 2 we present the lyrics of “Pi” by the influential British
singer songwriter Kate Bush [18]. The Observer review of her 2005 collection Aerial, on which
the song appears, wrote that it is

a sentimental ode to a mathematician, audacious in both subject matter and treat-
ment. The chorus is the number sung to many, many decimal places.7

2 Pre-digital History

π is arguably the only mathematical topic from very early history that is still being researched
today. The Babylonians used the approximation π ≈ 3. The Egyptian Rhind Papyrus, dated

4See the 2013 movie at http://www.youtube.com/watch?v=Vp9zLbIE8zo.
5A comprehensive Pi Day presentation is lodged at http://www.carma.newcastle.edu.au/jon/piday.pdf.
6See also [12, Irving Kaplansky’s “A song about Pi.”].
7She sings over 150 digits but errs after 50 places. The correct digits occurred with the published lyrics.
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The admirable number pi:
three point one four one.
All the following digits are also just a start,
five nine two because it never ends.
It can’t be grasped, six five three five, at a glance,
eight nine, by calculation,
seven nine, through imagination,
or even three two three eight in jest, or by comparison
four six to anything
two six four three in the world.
The longest snake on earth ends at thirty-odd feet.
Same goes for fairy tale snakes, though they make it a little longer.
The caravan of digits that is pi
does not stop at the edge of the page,
but runs off the table and into the air,
over the wall, a leaf, a bird’s nest, the clouds, straight into the sky,
through all the bloatedness and bottomlessness.
Oh how short, all but mouse-like is the comet’s tail!
How frail is a ray of starlight, bending in any old space!
Meanwhile two three fifteen three hundred nineteen
my phone number your shirt size
the year nineteen hundred and seventy-three sixth floor
number of inhabitants sixty-five cents
hip measurement two fingers a charade and a code,
in which we find how blithe the trostle sings!
and please remain calm,
and heaven and earth shall pass away,
but not pi, that won’t happen,
it still has an okay five,
and quite a fine eight,
and all but final seven,
prodding and prodding a plodding eternity
to last.

Figure 1: “PI,” by Wislawa Szymborska
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Sweet and gentle sensitive man
With an obsessive nature and deep fascination
For numbers
And a complete infatuation with the calculation
Of PI

Oh he love, he love, he love
He does love his numbers
And they run, they run, they run him
In a great big circle
In a circle of infinity

3.1415926535 897932
3846 264 338 3279

Oh he love, he love, he love
He does love his numbers
And they run, they run, they run him
In a great big circle
In a circle of infinity
But he must, he must, he must
Put a number to it

50288419 716939937510
582319749 44 59230781
6406286208 821 4808651 32

Oh he love, he love, he love
He does love his numbers
And they run, they run, they run him
In a great big circle
In a circle of infinity

82306647 0938446095 505 8223...

Figure 2: “Pi,” by Kate Bush
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roughly 1650 BCE, suggests π = 256/81 = 3.16049 . . .. Early Indian mathematicians be-
lieved π =

√
10 = 3.162277 . . .. Archimedes, in the first mathematically rigorous calculation,

employed a clever iterative construction of inscribed and circumscribed polygons to able to
establish that

3 10/71 = 3.14084 . . . < π < 3 1/7 = 3.14285 . . .

This amazing work, done without trigonometry or floating point arithmetic, is charmingly
described by George Phillips [12, Entry 4].

Life after modern arithmetic The advent of modern positional, zero-based decimal arith-
metic, most likely discovered in India prior to the fifth century [4, 27], significantly reduced
computational effort. Even though the Indo-Arabic system, as it is now known, was introduced
to Europeans first by Gerbert of Aurillac (c. 946 – 1003) in the 10th century (who became Pope
Sylvester II in 999), and again, in greater detail and more successfully, by Fibonacci in the early
13th century, Europe was slow to adopt it, hampering progress in both science and commerce.
In the 16th century, prior to the widespread adoption of decimal arithmetic, a wealthy German
merchant was advised, regarding his son’s college plans,

If you only want him to be able to cope with addition and subtraction, then any
French or German university will do. But if you are intent on your son going on
to multiplication and division—assuming that he has sufficient gifts—then you will
have to send him to Italy. [24, pg. 577]

Life after calculus Armed with decimal arithmetic and modern calculus, 17th, 18th and
19th century mathematicians computed π with aplomb. Newton recorded 16 digits in 1665,
but later admitted, “I am ashamed to tell you how many figures I carried these computations,
having no other business at the time.” In 1844 Dase, under the guidance of Strassnitzky,
computed 212 digit correctly in his head [14]. These efforts culminated with William Shanks
(1812-1882), who employed John Machin’s formula

π

4
= 4 arctan

(
1

5

)
− arctan

(
1

239

)
, (1)

where arctanx = x − x3/3 + x5/5 − x7/7 + x9/9 − · · · , to compute 707 digits in 1874. His
1853 work to 607 places was funded by 30 subscriptions from such notables as Rutherford, De
Morgan (two copies), Herschel (Master of the Mint and son of the astronomer) and Airy.8

Alas, only 527 digits were correct (as Ferguson found nearly a century later in 1946 using
a calculator), confirming the suspicions of De Morgan at the time, who asserted that there
were too many sevens in Shanks’ published result (although the statistical deviation was not as
convincing as De Morgan thought [26]). A brief summary of this history is shown in Table 1.

8He had originally intended to present only about 500 places, and evidently added the additional digits while
finishing the galleys a few months later [12, Entry 20]. Errors introduced in a rush to publish are not new.
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Archimedes 250? BCE 3 3.1418 (ave.)
Liu Hui 263 5 3.14159
Tsu Ch’ung Chi 480? 7 3.1415926
Al-Kashi 1429 14
Romanus 1593 15
Van Ceulen 1615 39 (35 correct)
Newton 1665 16
Sharp 1699 71
Machin 1706 100
De Lagny 1719 127 (112 correct)
Vega 1794 140
Rutherford 1824 208 (152 correct)
Strassnitzky and Dase 1844 200
Rutherford 1853 440
Shanks 1853 607 (527 correct)
Shanks 1873 707 (527 correct)

Table 1: Brief chronicle of pre-20th-century π calculations

We note that Sharp was a cleric, Ferguson was a school teacher and Dase a “kopfrechnenner”.
Many original documents relating to this history can be found in [12].

Mathematics of Pi Alongside these numerical developments, the mathematics behind π
enjoyed comparable advances. In 1761, using improper continued fractions, Lambert [12, Entry
20] proved that π is irrational, thus establishing that the digits of π never repeat. Then in 1882,
Lindemann [12, Entry 22] proved that eα is transcendental for every nonzero algebraic number
α, which immediately implied that π is transcendental (since eiπ = −1). This result settled in
decisive terms the 2000-year-old question of whether a square could be constructed with the
same area as a circle, using compass and straightedge (it cannot, because if it could then π
would be a geometrically constructible number and hence algebraic).

3 The twentieth century and beyond

With the development of computer technology in the 1950s and 1960s, π was computed to thou-
sands of digits, facilitated in part by new algorithms for performing high-precision arithmetic,
notably the usage of fast Fourier transforms to dramatically accelerate multiplication.
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Ramanujan-type series for 1/π Even more importantly, computations of π began to em-
ploy some entirely new mathematics, such as Ramanujan’s 1914 formula

1

π
=

2
√

2

9801

∞∑
k=0

(4k)!(1103 + 26390k)

(k!)43964k
, (2)

each term of which produces an additional eight correct digits in the result [16]. David and
Gregory Chudnovsky employed the variant

1

π
= 12

∞∑
k=0

(−1)k(6k)!(13591409 + 545140134k)

(3k)!(k!)36403203k+3/2
, (3)

each term of which adds 14 correct digits. Both of these formulas rely on rather deep number
theory [14] and related modular-function theory [16].

Reduced complexity algorithms [17] for 1/π Another key development in the mid 1970s
was the Salamin-Brent algorithm [12, Entries 46 and 47] for π: Set a0 = 1, b0 = 1/

√
2 and

s0 = 1/2. Then for k ≥ 1 iterate

ak =
ak−1 + bk−1

2
bk =

√
ak−1bk−1

ck = a2k − b2k sk = sk−1 − 2kck pk =
2a2k
sk
. (4)

The value of pk converges quadratically to π — each iteration approximately doubles the number
of correct digits.

A related algorithm, inspired by a 1914 Ramanujan paper, was found in 1986 by one of us
and Peter Borwein [16]: Set a0 = 6− 4

√
2 and y0 =

√
2− 1. Then for k ≥ 0 iterate

yk+1 =
1− (1− y4k)1/4

1 + (1 + y4k)
1/4

(5)

ak+1 = ak(1 + yk+1)
4 − 22k+3yk+1(1 + yk+1 + y2k+1).

Then ak converges quartically to 1/π — each iteration approximately quadruples the number
of correct digits. Just twenty-one iterations suffices to produce an algebraic number that agrees
with π to more than six trillion digits (provided all iterations are performed with this precision).

With discoveries such as these, combined with prodigious improvements in computer hard-
ware, thanks to Moore’s Law, and clever use of parallelism, π was computed to millions, then
billions, and, in 2011, to 10 trillion decimal digits. A brief chronicle of π computer-age com-
putations is shown in Table 2.9

9It is probably unnecessary to note that the Shanks of this table is not the Shanks of Table 1.
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Ferguson 1945 620
Smith and Wrench 1949 1,120
Reitwiesner et al. (ENIAC) 1949 2,037
Guilloud 1959 16,167
Shanks and Wrench 1961 100,265
Guilloud and Bouyer 1973 1,001,250
Kanada, Yoshino and Tamura 1982 16,777,206
Gosper 1985 17,526,200
Bailey Jan. 1986 29,360,111
Kanada and Tamura Jan. 1988 201,326,551
Kanada and Tamura Nov. 1989 1,073,741,799
David and Gregory Chudnovsky Aug. 1991 2,260,000,000
Kanada and Takahashi Apr. 1999 51,539,600,000
Kanada and Takahashi Sep. 1999 206,158,430,000
Kanada and 9 others Nov. 2002 1,241,100,000,000
Bellard Dec. 2009 2,699,999,990,000
Kondo and Yee Aug. 2010 5,000,000,000,000
Kondo and Yee Oct. 2011 10,000,000,000,000

Table 2: Brief chronicle of computer-age π calculations

4 Computing digits of π at an arbitrary starting position

A recent reminder of the folly of thinking that π is fully understood was the 1996 discovery
of a simple scheme for computing binary or hexadecimal digits of π, beginning at an arbitrary
starting position, without needing to compute any of the preceding digits. This scheme is based
on the following formula, which was discovered by a computer program implementing Ferguson’s
“PSLQ” algorithm [20, 9]:

π =
∞∑
k=0

1

16k

(
4

8k + 1
− 2

8k + 4
− 1

8k + 5
− 1

8k + 6

)
. (6)

The proof of this formula (now known as the “BBP” formula for π) is a relatively simple exercise
in calculus. It is perhaps puzzling that it had not been discovered centuries before. But then
no one was looking for such a formula.

How bits are extracted The scheme to compute digits of π beginning at an arbitrary
starting point is best illustrated by considering the similar (and very well known) formula for
log 2:

log 2 =
∞∑
k=1

1

k2k
. (7)
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Note that the binary expansion of log 2 beginning at position d+1 is merely the fractional part
of 2d log 2, so that we can write (where {·} denotes fractional part):

{
2d log 2

}
=

{{
d∑

k=1

2d−k mod k

k

}
+

{
∞∑

k=d+1

2d−k

k

}}
. (8)

Now note that the numerators of the first summation can be computed very rapidly by means
of the binary algorithm for exponentiation, namely the observation, for example, that 317 mod
10 = ((((32 mod 10)2 mod 10)2 mod 10)2 mod 10) · 3 mod 10. This same approach can be used
to compute binary or hexadecimal digits of π using (6).

This scheme has been implemented to compute hexadecimal digits of π beginning at strato-
spherically high positions. In July 2010, for example, Tsz-Wo Sze of Yahoo! Cloud Computing
found computed base-16 digits of π beginning at position 2.5 × 1014. Then on March 14 (Pi
Day), 2013, Ed Karrels of Santa Clara University computed 26 base-16 digits beginning at
position one quadrillion [25]. His result: 8353CB3F7F0C9ACCFA9AA215F2.

Beyond utility Certainly there is no need for computing π to millions or billions of digits
in practical scientific or engineering work. A value of π to 40 digits is more than enough to
compute the circumference of the Milky Way galaxy to an error less than the size of a proton.
There are certain scientific calculations that require intermediate calculations to be performed
to higher than standard 16-digit precision (typically 32 or 64 digits may be required) [3], and
certain computations in the field of experimental mathematics have required as high as 50,000
digits [6], but we are not aware of any “practical” applications beyond this level.

Computations of digits of π are, however, excellent tests of computer integrity—if even
a single error occurs during a large computation, almost certainly the final result will be in
error, resulting in disagreement with a check calculation done with a different algorithm. For
example, in 1986, a pair of π-calculating programs using (4) and (5) detected some obscure
hardware problems in one of the original Cray-2 supercomputers.10 Also, some early research
into efficient implementations of the fast Fourier transform on modern computer architectures
had their origins in efforts to accelerate computations of π [2].

5 New techniques to explore normality and related prop-

erties

Given an integer b ≥ 2, a real number α is said to be b-normal or normal base b if every m-long
string of base-b digits appears in the base-b expansion of α with limiting frequency 1/bm. It
is easy to show via measure theory that almost all real numbers are b-normal for every b ≥ 2

10Cray’s own tests did not find these errors. After that these π algorithms were included of Cray’s test suite
in the factory.
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(a condition known as absolute normality), but establishing normality for specific numbers has
proven to be very difficult.

In particular, no one has been able to establish that π is b-normal for any integer b, much
less for all bases simultaneously. It is a premier example of an intriguing mathematical question
that has occurred to countless schoolchildren as well as professional mathematicians through
the ages, but which has defied definitive answer to the present day. A proof for any specific
base would not only be of great interest worldwide, but would also have potential practical
application as a provably effective pseudorandom number generator. This ignorance extends to
other classical constants of mathematics, including e, log 2,

√
2 and γ (Euler’s constant). Borel

conjectured that all irrational algebraic numbers are absolutely normal, but this has not been
proven in even a single instance, to any base.

Two examples where normality has been established are Champernowne’s number C10 =
0.12345678910111213 . . . (constructed by concatenating the positive integers), which is provably
10-normal, and Stoneham’s number α2,3 =

∑
k≥0 1/(3k23k), which is provably 2-normal—see

below [10, 11, 28]. One relatively weak result for algebraic numbers is that the number of 1-bits
in the binary expansion of a degree-D algebraic number α must exceed Cn1/D for all sufficiently
large n, for a positive number C that depends on α [8]. Thus, for example, the number of 1-bits
in the first n bits of the binary expansion of

√
2 must exceed

√
n.

In spite of these intriguing developments, it is clear that more powerful techniques must
be brought to bear on the question of normality, either for π or other well-known constants of
mathematics, before significant progress can be achieved. Along this line, modern computer
technology suggests several avenues of research.

Statistical analysis One approach is simply to perform large-scale statistical analyses on
the digits of π, as has been done, to some degree, on nearly all computations since ENIAC.
In [7], for example, the authors empirically tested the normality of its first roughly four trillion
hexadecimal (base-16) digits using a Poisson process model, and concluded that, according to
this test, it is “extraordinarily unlikely” that π is not 16-normal (of course, this result does not
pretend to be a proof).

Graphical representations Another fruitful approach is to display the digits of π or other
constants graphically, cast as a random walk [1]. For example, Figure 3 shows a walk based
on one million base-4 pseudorandom digits, where at each step the graph moves one unit east,
north, west or south, depending on the whether the pseudorandom iterate at that position
is 0, 1, 2 or 3. The color indicates the path followed by the walk—shifted up the spectrum
(red-orange-yellow-green-cyan-blue-purple-red) following an HSV scheme with S and V equal
to one. The HSV (hue, saturation and value) model is a cylindrical-coordinate representation
that yields a rainbow-like range of colors.

Figure 4 shows a walk on the first 100 billion base-4 digits of π. This may be viewed
dynamically in more detail online at http://gigapan.org/gigapans/106803, where the full-
sized image has a resolution of 372,224×290,218 pixels (108.03 billion pixels in total). This is

11

http://gigapan.org/gigapans/106803


Figure 3: A uniform pseudorandom walk.

one of the largest mathematical images ever produced and, needless to say, its production was
by no means easy [1].

Although no clear inference regarding the normality of π can be drawn from these figures,
it is plausible that π is 4-normal (and thus 2-normal), since the overall appearance of its graph
is similar to that of the graph of the pseudorandomly generated base-4 digits.

The Champernowne numbers We should emphasize what a poor surrogate for randomness
the notion of normality actually is. The base-b Champernowne number, Cb, is formed by
concatenating the natural numbers base b as a floating point number in that base. It was the
first type of number proven to be normal and fails stronger normality tests [1]. Thus,

Cb :=
∞∑
k=1

∑bk−1
m=bk−1 mb

−k[m−(bk−1−1)]

b
∑k−1

m=0m(b− 1)bm−1
(9)

C10 = 0.123456789101112 . . .

C4 = 0.1231011121320212223 . . .4 .

In Figure 5 we show how far from random a walk on a normal number may be – pictorially or
by many quantitative measures – as illustrated by C4.
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Figure 4: A walk on the first 100 billion base-4 digits of π.

Figure 5: A walk on Champernowne’s base-4 number.
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Stoneham numbers This same tool can be employed to study the digits of Stoneham’s
constant, namely

α2,3 =
∞∑
k=0

1

3k23k
. (10)

This constant is one of the few that is provably 2-normal (and thus 2n-normal, for every positive
integer n) [28, 10, 11]. What’s more, it is provably not 6-normal, so that it is an explicit example
of the fact that normality in one base does not imply normality in another base [5]. For other
number bases, including base 3, its normality is not yet known one way or the other.

Figures 6, 7 and 8 show walks generated from the base-3, base-4 and base-6 digit expansions,
respectively, of α2,3. The base-4 digits are graphed using the same scheme mentioned above,
with each step moving east, north, west or south according to whether the digit is 0, 1, 2 or 3.
The base-3 graph is generated by moving unit distance at an angle 0, π/3 or 2π/3, respectively,
for 0, 1 or 2. Similarly, the base-6 graph is generated by moving unit distance at angle kπ/6
for k = 0, 1, · · · , 5.

Figure 6: A walk on the base-3 digits of Stoneham’s constant (α2,3).

From these three figures it is clear that while the base-3 and base-4 graphs appear to be
plausibly random (since they are similar in overall structure to Figures 3 and 4), the base-6
walk is vastly different, mostly a horizontal line. Indeed, we discovered the fact that α2,3 fails
to be 6-normal by a similar empirical analysis of the base-6 digits—there are long stretches
of zeroes in the base-6 expansion [5]. Results of this type are given in [1] for numerous other
constants besides π, both “man-made” and “natural.”
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Figure 7: A walk on the provably normal base-4 digits of Stoneham’s constant (α2,3).

Figure 8: A walk on the abnormal base-6 digits of Stoneham’s constant (α2,3).
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Such results certainly do not constitute formal proofs, but they do suggest, often in dramatic
form, as we have seen, that certain constants are not normal, and can further be used to bound
statistical measures of randomness. For example, remarkable structure was uncovered in the
normal Stoneham numbers [1]. Moreover, many related quantitative measures of random walks
were examined, as were other graphical representations. Much related information including
animations is stored at http://carma.newcastle.edu.au/walks/.

6 Other unanswered questions

Mathematical questions There are, of course, numerous other unanswered mathematical
questions that can be posed about π:

1. Are the continued fraction terms of π bounded or unbounded? The continued fraction
expansion provides information regarding how accurately π can be written as a fraction.

2. Is the limiting fraction of zeroes in the binary expansion of π precisely 1/2? Is the limiting
fraction of zeroes in the decimal expansion precisely 1/10? We do not know the answers
to these questions even for simple algebraic constants such as

√
2, much less π.

3. Are there infinitely many ones in the ternary expansion of π? Are there infinitely many
sevens in the decimal expansion of π? Sadly, we cannot definitively answer such basic
questions one way or the other.

Meta-mathematical questions For that matter, there are numerous historical questions
that are worth asking if only rhetorically:

1. Why was not π known more accurately in ancient times? It could have been known to at
least two-digit accuracy by making careful measurements with a rope.

2. Why did Archimedes, in spite of his astonishing brilliance in geometry and calculus, fail
to grasp the notion of positional, zero-based decimal arithmetic? This would have greatly
facilitated his computations (and likely would have changed history as well).

3. Why did Indian mathematicians fail to extend their system of decimal arithmetic for
integers to decimal fractions? Decimal fraction notation was first developed in the Arabic
world in the 12th century. They managed by scaling their results, but missed the obvious.

4. Why did Gauss and Ramanujan fail to exploit their respective identities for π? After all,
the Salamin-Brent quadratically convergent algorithm for π is derived directly from some
identities of Gauss, and other algorithms for π follow from (then largely unproven) for-
mulas of Ramanujan. For that matter, why was the notion of an algorithm, fundamental
in our computer age, so foreign to their way of thinking?
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5. Why did centuries of mathematicians fail to find the BBP formula for π, namely formula
(6), not to mention the associated “trick” for computing digits at an arbitrary starting
position? After all, as mentioned above, it can be proven in just a few steps with freshman-
level calculus.

In any event, it is clear that modern computer technology has changed the game for π.
Modern systems are literally billions of times faster and more capacious than their predecessors
when the present authors began their careers, and advances in software (such as fast Fourier
transforms for high-precision numerical computation and symbolic computing facilities for al-
gebraic manipulations) have improved computational productivity just as much as hardware
improvements.

And computers are no longer merely passive creatures. A computer program discovered the
BBP formula for π, as well as similar formulas for numerous other constants. Other formulas
for π have been discovered by computer in a similar way, using high-precision implementations
of the PSLQ algorithm or related integer relation algorithms.

Two unproven facts In some of these cases, such as the following two formulas, proofs
remain elusive:

4

π3

?
=

∞∑
k=0

r7(k) (1 + 14k + 76k2 + 168k3)

82k+1
(11)

2048

π4

?
=

∞∑
k−0

(1
4
)k (1

2
)7k (3

4
)k

(1)9k 212k

(
21 + 466k + 4340k2 + 20632k3 + 43680k4

)
, (12)

where, in the first (due to Gourevich in 2001), r(k) = 1/2 · 3/4 · · · · · (2k − 1)/(2k), and, in
the second (due to Cullen in 2010), the notation (x)n = x(x + 1)(x + 1) · · · (x + n − 1) is the
Pochhammer symbol.

7 Conclusion

The mathematical constant π has intrigued both the public and professional mathematicians
for millennia. Countless facts have been discovered about π and published in the mathematical
literature. But, as we have seen, much misunderstanding abounds. We must also warn the
innocent reader to beware of mathematical terrorists masquerading as nice people, in their evil
attempt to replace π by τ = 2π (which is pointless in any event since the binary expansion of
τ is the same as π, except for a shift of the decimal point).11

Yet there are still very basic questions that remain unanswered, among them whether (and
why) π is normal to any base. Indeed, why do the basic algorithms of arithmetic, implemented

11See http://tauday.com/ and
www.pbs.org/newshour/rundown/2013/03/for-the-love-of-pi-and-the-tao-of-tau.html.
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to compute constants such as π, produce such random-looking results? And can we reliably
exploit these randomness-producing features for benefit, say, as commercial-quality pseudoran-
dom number generators?

Other challenges remain as well. But the advent of the computer might at last give hu-
mankind the power to answer some of them. Will computers one day be smarter than human
mathematicians? Probably not anytime soon, but in the meantime they are remarkably pleas-
ant research assistants.
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