Finding New Mathematical Identities via Numerical Computations
David H. Bailey
NASA Ames Research Center
December 11, 1997
Ref: ACM SIGNUM, vol. 33, no. 1 (Jan. 1998), pg. 17-22

Abstract

This note gives an overview some recent developments in computational mathemat-
ics, where high-precision numerical computations, together with advanced integer relation
algorithms, have been employed to discover heretofore unknown mathematical identities.
One of these new identities, a remarkable new formula for =, permits one to directly com-
pute the n-th hexadecimal digit of 7, without computing the first n —1 digits, and without
the need of multiple-precision arithmetic software.

1. Introduction
In April 1993, Enrico Au-Yeung, an undergraduate at the University of Waterloo,
brought to the attention of Jonathan Borwein, his professor, the curious fact that

00 1 1 2 _2
Z(l—l———l-"-—l-—) k = 4.59987---
= 2 k

17 1774

L 4) =
based on a computation to 500,000 terms. Borwein was very skeptical of this finding
— if such an identity truly existed, why hadn’t it been discovered by mathematicians
centuries ago? Borwein tried computing this sum to a higher level of precision in order to
demonstrate to the student that this conjecture really did not precisely hold. Surprisingly,
in subsequent computations by Borwein to 30 digits and by myself to over 100 decimal
digits, this relation was upheld.

Intrigued by this finding, Borwein and other researchers subsequently discovered nu-

merous other identities of this form, which have been termed “Euler sums”, since Euler

b
first studied some special cases. Many of these specific results (including the above iden-
tity), but not all, have subsequently been proven rigorously. Indeed, the methodology used
in these investigations is often termed “experimental mathematics”, wherein one utilizes
computer programs to explore mathematical phenomena, thereby finding tentative results
which afterwards are verified with rigorous proofs.

Some examples of these Fuler sum identities are given in Table 1. Others are given in
[2]. In the table, ((t) = 3252, j~" is the Riemann zeta function, and Li,(z) = 352, xl g
denotes the polylogarithm function.

g:l (1 bt %)2 (k+1)™ = 232767;2 3
(ol o - .
g} (1 - % TR (—1)’f+1%)2 (k+1) = 4Lis(1/2) — %hﬁ(z) _ %5(5)
_%w“ In(2) + 24(3) In?(2) + %H In%(2) — %772((3)

Table 1: Some Euler sum identities found by computer

2. Integer Relation Algorithms

These computer searches require the values of these sums and constants to be computed
to very high precision — from 100 to 1,000 decimal digits. Computing these values to such
high precision requires advanced numerical techniques, and is often quite expensive. See
[2] for details. Once these values are computed, an “integer relation” algorithm is utilized
to see if the computed constants match an identity of a given form. An integer relation
algorithm is an algorithm that, when given an n-long vector of real numbers z;, attempts
to find integer coefficients a;, not all zero, such that a;zy + asze + -+ - + a,z, = 0.

One such algorithm is the “PSLQ” algorithm, which was discovered by Helaman Fergu-
son of the Center for Computing Sciences in Maryland (better known for his mathematical
sculptures). Here is a concise statement of the PSLQ algorithm. For proof and further
details, see [5].

Let = be the n-long input real vector, and let nint denote the nearest integer function
(for exact half-integer values, define nint to be the integer with greater absolute value).

Let v := 4/4/3. Then perform the following:
Initialize:
1. Set the n x n matrices A and B to the identity.

2. For k :=1 to n: compute s; := (/3% 2%; endfor. Set { = 1/s;. For k := 1 to n:
Yy := tay; s := tsy; endfor.
3. Compute the n x (n — 1) matrix H as follows:

For ¢ := 1 to n: for y := 1+ 1 to n — 1: set H;; := 0; endfor; if : < n — 1 then set
Hii:= sip1/si; for j:=11%o ¢ —1: set H;; := —y,y;/(5;8;41); endfor; endfor.

4. Perform full reduction on H, simultaneously updating y, A and B:

Fori:=2ton: forj:=i—1tolstep —1: ¢t :=nint(H;;/H;;); y; := yj+ty; for k=1
to j sz = sz —tH]‘k; endfor; for £ :=1 to n: Azk = Aik—tA]‘k, Bk]‘ = Bk]‘ —I-tB]m';

endfor; endfor; endfor.
Repeat until precision is exhausted or a relation has been detected:

1. Select m such that ~°|Hj;| is maximal when i = m.

2. Exchange entries m and m—+1 of y, corresponding rows of A and H, and corresponding
columns of B.

3. If m < n — 2 then update H as follows:

Set tg := \/anm + HE 0y ti= Hpy [t and ty := Hyy g /to. Then for 2 := m to
n: tyi= Hypy; ty = H; 1y Hiyy = tits + tots; Hp g 1= —1ats + t1t4; endfor.

4. Perform block reduction on H, simultaneously updating y, A and B:

Fori:=m+41ton: for j :=min(i —1,m+1) to 1 step —1: ¢ :=nint(H,;/H;;); y; :=
y; + ty;; for k := 1 to j: Hy, := Hy — tHj; ; endfor; for £ := 1 to n: Ay =
Ai, — tAjg, By := By + 1 By; endfor; endfor; endfor.

5. Norm bound: Compute M := 1/max;|H,|, where H; denotes the j-th row of H.
Then there can exist no relation vector whose Fuclidean norm is less than M.

6. Termination test: If the largest entry of A exceeds the level of numeric precision
used, then precision is exhausted. If the smallest entry of the y vector is less than
the detection threshold, a relation has been detected and is given in the corresponding
column of B.

With regards to the termination criteria in step 6, it sometimes happens that a relation
is missed at the point of potential detection because the y entry is not quite as small as
the detection threshold being used (the threshold is typically set to the “epsilon” of the
precision level). When this happens, however, one will note that the ratio of the smallest
and largest y vector entries is suddenly very small, provided sufficient numeric precision is
being used. In a normal computer run using the PSLQ algorithm, prior to the detection
of a relation, this ratio is seldom smaller than 1072, Thus if this ratio suddenly decreases
to an exceedingly small value, such as 1072°, then almost certainly a relation has been
detected — one need only adjust the detection threshold for the algorithm to terminate
properly and output the relation. When detection does occur, this ratio may be thought
of as a “confidence level” of the detection.

Experience with PSLQ indicates that one can expect to detect a relation of degree n,
with coefficients of size 10™, provided that the input vector is known to somewhat greater

than mn digit precision, and provided that computations are performed using at least this
level of numeric precision.

3. Applications of the Integer Relation Algorithms

There are a number of applications of integer relation detection algorithms in compu-
tational mathematics. One application is to analyze whether or not a given constant «,
whose value can be computed to high precision, is algebraic of some degree n or less. This
can be done by first computing the vector x = (1, a, @, -+, a") to high precision and then
applying an integer relation algorithm to the vector x. If a relation is found, this integer
vector is precisely the set of coefficients of a polynomial satisfied by a. Even if a relation is
not found, the resulting bound means that a cannot possibly be the root of a polynomial
of degree n, with coefficients of size less than the established bound. Even negative results
of this sort are often of interest.

Several computations of this type have been performed by the author. These computa-
tions have established, for example, that if Euler’s constant v satisfies an integer polynomial
of degree 50 or less, then the Euclidean norm of the coefficients must exceed 7 x 10'7.

The application of finding identities for Euler sum constants is well suited to analysis
with integer relation algorithms. Consider for example

00 1 1 2
Ap = 3 (1=g e+ 2)TE))7
k=1

= 0.156166933381176915881035909687988193685776709840 - - -

Based on experience with other Euler sum constants, it was conjectured that A, 5 satisfies a
relation involving homogeneous combinations of degree five involving ((2), ((3),((4),((5),
In(2), Lis(1/2) and Lis(1/2), where Li,(x) = 332, 2¥k~" denotes the polylogarithm func-
tion. The set of terms involving these constants with degree five are as follows: Lis(1/2),
Lis(1/2)In(2), 1n°(2), ¢(5), ¢(4)In(2), ¢(3)In*(2), ¢(2)In*(2), ¢(2)¢(3). When the nu-
merical value of Aj 3 is augmented with this set of terms, all computed to 135 decimal
digits accuracy, and the resulting 9-long vector is input to the PSLQ algorithm, it de-
tects the relation (480, —1920,0, 16,255,660, —840, —160,360) at iteration 390. Solving

this relation for A3, one obtains the formula

Ans = ALis(1/2) — o I0°(2) = 20(5) — C(4)In(2) + 1C(3) I (2)

30
P20 IR(2) — C2)3)
= 4Lis(1/2) — ;—01n5(2) — i—;g@) — %w‘*ln(z) + Zc(g)mz(z)
1 21..3 3 2
—I—Eﬂ' In”(2) — i ((3)

(recall that ((2n) = (27)**|Ba.|/ [2(2n)!]).

4. A New Formula for Pi

Humankind has been fascinated with the constant 7 = 3.14159 ... throughout recorded
history. The Babylonians used the approximation 3.125, while the Old Testament (I Kings
7:23) assumes the value 3.0. Archimedes found the first true algorithm for computing 7 in
about 250 BC, and used it to find 7 to two digits accuracy. Isaac Newton found several
new formulas for . Using these formulas, he recorded a value of 7 to 16 decimal places in
his notebook, but later sheepishly admitted, “I am ashamed to tell you how many figures
I carried these computations, having no other business at the time.”

More recently, modern computer technology has made it possible to compute millions
and even billions of digits, by employing fast new formulas for 7 and efficient arithmetic
techniques, based on the fast Fourier transform (FFT). In the most recent computation of
this sort, Yasumasa Kanada at the University of Tokyo computed over 51 billion decimal
digits of 7. Some additional details on the history of 7 are given in [3].

Although there are no engineering motivations for these computations, there is some
mathematical interest. In particular, although mathematicians suspect that the digits of
7 (as well as numerous other math constants) are “random”, they have never been able
to prove this assertion in even a single instance. Thus there is continuing interest in the
output of such calculations, to see if there are any statistical irregularities that would
suggest that this conjecture is false.

Through the centuries mathematicians have assumed that the computational cost of
computing just the n-th digit of # and similar constants is not significantly less than
computing all of the first n digits. In other words, it has been assumed that there is no
“shortcut” to computing just the n-th digit of 7. Thus, it came as no small surprise when
such an algorithm was recently discovered [1]. In particular, this simple scheme allows one
to compute the n-th hexadecimal digit of 7 without computing any of the first n — 1 digits,
without using multiple-precision arithmetic software, and with very little memory. The
1,000,000-th hex digit of 7 can be computed in just two minutes on a personal computer.

This scheme is based on the following remarkable new formula for 7:

o1 4 2 1 1
B ;162' <8i—l—1 8i+4 8i+5 8@'—|—6)
Like the formulas shown above, this one was discovered using the PSLQ integer relation
algorithm. This may be the first instance in history that a significant new formula for =
was discovered by a computer.

The proof of this formula is not very difficult. First note that for any & < 8,

1/\/5 xk—l 1/\/5 0) 1 o) 1
d — / k—1+487 d — ' :
/0 T8 0 Z::Ox MSTE ; 16%(8i + k)

Thus we can write

ii< 4211)
160 \8i+1 Si+4 8i+5 Si+6

dx

/wf 42 — 8% — 422 — 825
0 1 — 8

which on substituting y := v/2z becomes

1 16y — 16 I R C L 4y -8 B
. 3 dy = > dy — — 5 Sdy =7
oy*—2y° +4y —4 0o y*—2 0o y*—2y+2

reflecting a partial fraction decomposition of the integral on the left-hand side.
Needless to say, this proof is not terribly difficult or obscure. One wonders why Euler,

for example, didn’t discover this formula. A similar formula for 72 (which also was first
discovered using the PSLQ algorithm) is as follows:

e sl 16 16§ 16
TS [(8i+ 1) (8i+2)? (8437 (8i+4)
4 4 >

Bi157 (8167 (SitTe

Formulas of this type for a few other mathematical constants are given in [1].

5. Computing the n-th Hex Digit of Pi
Computing individual hexadecimal digits of 7 using the above formula relies on the
binary algorithm for exponentiation, wherein one efficiently evaluates 2™ by successive
squaring and multiplication. According to Knuth, this technique dates back at least to 200
B.C [6]. In this application, it is necessary to obtain the exponentiation result modulo a
positive integer ¢, but this can be efficiently done with the following variant of the binary
exponentiation algorithm, wherein the result of each multiplication is reduced modulo ¢:
To compute r = 6" mod ¢, first set ¢ to be the largest power of two < n, and set r = 1.
Then
A:ifn >t thenr«— brmode; n+«n—t; endif
t—1/2
if £t > 1 then r < r? mod ¢; goto A; endif

Here “mod” is used in the binary operator sense, namely as the binary function defined by
z mod y := x — [x/y]y. Note that the above algorithm is entirely performed with positive
integers that do not exceed ¢? in size.
Consider now the first of the four sums in the formula above for 7:
> 1
=y L
= 16F(8k + 1)

First observe that the hexadecimal digits of S beginning at position d + 1 can be obtained
from the fractional part of 169S;. Then we can write

o] 16d—k
frac(lGdSl) = Z mod 1
i 8k + 1
1 d—k d k 1 00 1 d—k
= Z 6 mod 8k + mod 1 + Z 6 mod 1
= k41 k:d+18k—|—1

Hex Digits Beginning
Position At This Position
10 26C65E52CB4593
107 17AF5863EFEDSD
108 ECB840E21926EC
10° 8589558540428B
1010 921C73C6838FB2
2.5 x 101 87F72B1DC97869

Table 2: Hexadecimal Digits of «

For each term of the first summation of this last line, the binary exponentiation algorithm
can be used to rapidly evaluate the numerator. This can be done using either integer or
64-bit floating-point arithmetic. Then floating-point arithmetic can be used to perform
the division and add the quotient to the sum mod 1 (i.e. retaining only the fractional
part). The second summation, where the exponent of 16 is negative, may be evaluated in
a straightforward fashion using floating-point arithmetic. Only a few terms of this second
summation need be evaluated, just enough to insure that the remaining terms sum to
less than the “epsilon” of the floating-point arithmetic being used. The final result, a
fraction between 0 and 1, is then converted to base 16, yielding the (d + 1)-th hexadecimal
digit, plus several additional digits. Full details of this scheme, including some numerical
considerations, as well as analogous formulas for a number of other basic mathematical
constants, can be found in [1]. Sample implementations of this scheme in both Fortran
and C are available from the web site http://www.cecm.sfu.ca/personal/pborwein/.

Along this line, Table 2 gives some hexadecimal digits of 7 computed using the above
scheme. The last of these was recently obtained by Fabrice Bellard in France.

One question that immediately arises in the wake of this discovery is whether or not
there is a formula of this type and an associated computational scheme to compute indi-
vidual decimal digits of #. Alas, no decimal scheme for 7 is known at this time, although
there is for certain constants such as log(9/10) — see [1]. On the other hand, there is not
yet any proof that a decimal scheme for 7 cannot exist. This question is currently being
actively pursued by researchers.

References

1]

D. H. Bailey, P. B. Borwein and S. Plouffe, “On The Rapid Computation of Vari-
ous Polylogarithmic Constants”, Mathematics of Computation, vol. 66, no. 218 (April
1997), pg. 903-913.

David H. Bailey, Jonathan M. Borwein and Roland Girgensohn, “Experimental Evalu-
ation of Euler Sums”, Experimental Mathematics, vol. 3, no. 1 (1994), pg. 17-30.

David H. Bailey, Jonathan M. Borwein, Peter B. Borwein and Simon Plouffe, “The
Quest for Pi”, Mathematical Intelligencer, vol. 19, no. 1 (January 1997), pg. 50-57.

Jonathan M. Borwein and Peter B. Borwein, Pi and the AGM, Wiley, New York, NY,
1987.

Helaman R. P. Ferguson and David H. Bailey, “Analysis of PSLQ, An Integer Relation
Finding Algorithm”, Mathematics of Computation, to appear.

Donald E. Knuth, The Art of Computer Programming, vol. 2, Addison-Wesley, Read-
ing, MA, 1981.

