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|dentifying definite integrals

Using computational methods to identify integrals is one of the most productive
application of the experimental mathematics paradigm. Some particularly useful
instances include:

> Ising integrals.

» Box integrals.

v

Ramble integrals.

v

Integrals of elliptic integral functions.
The key challenge is evaluating the integral to several hundred or several thousand

digit precision.

Most quadrature (i.e., numerical integration) schemes studied in numerical analysis fail
miserably for very high precision applications.
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Gaussian quadrature

Gaussian quadrature is often the most efficient scheme for completely regular functions
(including endpoints) and modest precision (less than 1000 digits):

n

[ e~ wrt

The abscissas (x;) are the roots of the n-th degree Legendre polynomial P,(x) on
[—1,1]. The weights (w;) are given by

Y -2

T (n+ 1)PL(x)Posa ()
The abscissas (x;) are computed by Newton iterations, with starting values
cos[m(j — 1/4)/(n+ 1/2)]. Legendre polynomials and their derivatives can be
computed using the formulas Py(x) = 0, P1(x) =1, and
(k + 1)Pryi1(x) = (2k + 1)xPy(x) — kPx_1(x)
Pr(x) = n(xPn(x) = Po_1(x))/(x* = 1)
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Gaussian quadrature, continued

Advantages:
» For regular functions, it is typically the fastest quadrature scheme available.

» Decreasing h by a factor of two (i.e., increasing n by a factor of two) typically
doubles the number of correct digits (provided all computations are performed to
at least this precision level).

Disadvantages:
» Gaussian quadrature fails if the function or its higher derivatives has a singularity.

» Computation cost of abscissas and weights increases quadratically with n. This
limits the scheme to less than 1000 digits or so.

» Abscissas and weights for a given n cannot be used for 2n or any other value.



The Euler-Maclaurin summation formula

fx)dx =h)_f0) = 5(f(a) + (b))
a j:O
Z h(2IB;2, <D2i71f(b) _ DZ"*lf(a)) — E(h)

[E(h)] < (b — 1)(h/(2m))*™** max, [D*" 3 (x)|

Here h= (b —a)/n and x; = a + jh; By are Bernoulli numbers; D" f(x) is the m-th
derivative of f(x).

The E-M formula can be thought of as providing high-order correction terms to the
trapezoidal rule.

Note that in the case when f(x) and all of its derivatives are zero at the endpoints a
and b (as in a bell-shaped curve), the error E(h) of a simple trapezoidal approximation
to the integral goes to zero more rapidly than any power of h.
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Tanh-sinh quadrature
Given f(x) defined on (—1,1), define g(t) = tanh(7/2 - sinh t), so that
g'(t) = /2 - cosh(t)/ cosh? (m/2 - sinh(t)). Then substituting x = g(t) yields

1 00 N
[ faac= [~ fe(e)g/(trde ~ b 3" wif().

-1 —o0 j=—N
where x; = g(hj) and w; = g’(hj). These abscissas and weights can be precomputed.

Since g’(t) goes to zero very rapidly for large t, the integrand f(g(t))g’(t) typically is
a nice bell-shaped function for which the Euler-Maclaurin formula applies. As a
consequence, for most integrand functions f(t), the simple summation above (which is
the tanh-sinh scheme) is remarkably accurate.

» D. H. Bailey, X. S. Li and K. Jeyabalan, “A comparison of three high-precision quadrature
schemes,” Experimental Mathematics, vol. 14 (2005), 317-329.
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Tanh-sinh quadrature, continued
Advantages:

» Tanh-sinh is not bothered by singularities at the endpoints (either for the function
itself or any higher derivative). If there is a singularity within the interval, just
perform two integrals.

» Computation cost of abscissas and weights only increases linearly with n, and so
computations with many thousands of digits are entirely feasible.

» Abscissas and weights computed for a given n can be used for the 2n set. They
are simply the even-indexed elements of the 2n set.

» Decreasing h by a factor of two (i.e., increasing n by a factor of two) typically
doubles the number of correct digits (provided all computations are performed to
at least this precision level).

Disadvantages:

» For regular functions that can also be evaluated using Gaussian quadrature,

tanh-sinh is typically several times slower.

| confess: tanh-sinh is my favorite!



How the tanh-sinh transformation handles singularities at endpoints

Upper plot: Original integrand on [—1, 1]:

f(x) = —log cos <7T2X>

Note the singularities at the endpoints.

Lower plot: Transformed using x = g(t):

.......

f(g(t))g'(t) =
_ log cos(/2 - tanh(sinh t)) (

cosh(t) )

cosh(sinh t)?

This is now a nice smooth bell-shaped
function, so the E-M formula implies that a
trapezoidal approximation is very accurate.
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Regular function or not?

Plots of f(x) = sinP(7wx){(p, x) (upper)
and its fourth derivative (lower), for p =3
(solid) and p = 7/2 (dashed). Here ( is
Hurwitz zeta function.

When p = 7/2, the function itself appears
completely regular, but the fourth
derivative blows up at both endpoints. As
a result, Gaussian quadrature works very
poorly for this function.

But tanh-sinh works fine.
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A log-tan integral identity verified with tanh-sinh quadrature
tant + \ﬁ

24 (/2
— / log
VT Jrj3 tant — /7
> { 1 1 1 1 1 1
(

D

n=0

dt = L_7(2) =

Tnt 12 T Tnt2?  (n+3)2  (Tn+42 (@n+52 (in+6)

This identity arises from analysis of
volumes of knot complements in hyperbolic ,

space. This is simplest of 998 related ‘
identities. : |

We verified this numerically to 20,000
digits, using tanh-sinh quadrature on a
highly parallel computer. A proof was
known, but we were not aware of this at
the time.
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Ising integrals from mathematical physics

We recently applied our methods to study three classes of integrals (one of which was
referred to us by Craig Tracy of U.C. Davis) that arise in the Ising theory of

mathematical physics:

G, = / / ujJrl/uJ))zdulil...

2
i—u
D, - / / Mg (575)  du
- Sl
ujJrl/uJ)) tn

2

k_Uj
E, = 2 dt, dtz - -
" / / Uk+ 2 3

1<) <k<

where in the last line v, = t1to - - - tg.

» D. H. Bailey, J. M. Borwein and R. E. Crandall, “Integrals of the Ising class,”

Mathematical and General, vol. 39 (2006), pg. 12271-12302.

du,

Un

du,

Un

-dt,

Journal of Physics A:
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Limiting value of C,: What is this number?

Key observation: The C, integrals can be converted to one- dimensional integrals
involving the modified Bessel function Kp(t):

2 oo
G = — tKy (t) dt
n! Jo

High-precision numerical values, computed using this formula and tanh-sinh
quadrature, approach a limit. For example:

Ciooa = 0.6304735033743867961220401927108789043545870787 . . .

What is this number? We copied the first 50 digits into the online Inverse Symbolic
Calculator (ISC) at https://isc.carma.newcastle.edu.au. The result was:

lim C, = 2e 2.
n—0o0

where v denotes Euler's constant. This is now proven.
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Other Ising integral evaluations found using PSLQ

D3 = 8+ 47%/3 — 27 Li_3(2)

Dy = 47%/9 —1/6 — 7¢(3)/2

E; =6 —8log?2

Ez =10 — 272 — 8log2 + 32log?2

E, =22 — 82¢(3) — 24log?2 + 176 log?® 2 — 256(log> 2)/3
+ 1672 log 2 — 2272 /3

Es = 42 — 1984 Lis(1/2) + 1897% /10 — 74¢(3) — 1272¢(3) log 2
+ 407% log® 2 — 627° /3 + 40(72 log 2) /3 + 88 log* 2
+ 464 log®2 — 40log 2

where ((x) is the Riemann zeta function and Li,(x) is the polylogarithm function.
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The Ising integral Eg

We were able to reduce Es to an extremely
complicated 3-D integral (see right).

We computed this integral to 250-digit
precision, using a highly parallel,
high-precision 3-D quadrature program.
Then we used a PSLQ program to discover
the evaluation given on the previous page.

We also computed Ds to 500 digits, but
were unable to identify it. In March 2014,
Erik Panzer proved our formula for Es and
found a similar evaluation for Ds.

» D. H. Bailey, J. M. Borwein and
R. E. Crandall, “Integrals of the Ising class,”
J. Physics A: Math. and Gen., vol. 39
(2006), 12271-12302.

Ey = /‘ /‘ /‘ [21 = 2)*(1 = y)* (1 —2y)* (1 = 2)*(1 = y2)* (1 - 2y2)*
Jo Jo Jo
(= [4(z + 1)(zy + 1) log(2) —y' 2@y + D)z +3)2° — 2 (v +1) 2* +4(y+
1)z +5)2° +y* (dy(y + 1 3P +1) 2+ 4y + 1)z —1)at +y (2 (2 + 42
+5)yt +4 (2 1) y+ 5z +4)a® + (=327 — 4z + 1)y —dzy + 1) 2® — (y(52+4)
) — 1]/ [(@ = 1)}y — 1) (zyz — 1] + [Bly — V' (= — 1)222(y=
—1)%8 +2¢%2 (3(z — 1)%2%° + +32+5)yt + (2 —1)%2
(522 + 162 +5) y* + (32" +32* —22:° - 22:2 + 32+ 3) y? + 3 (-2  + 22 + 2
22 42— 2) y+ 325 + 527 + 5z +8) 2® + 4% (T(2 — 1)%Yy° ?
+15z + 1)y + 222 (—212* 4 62° + 1422 + 62 — 21) y* — -
62+ 1)y + (72° — 302° + 282" + 5427 + 2852 — 302+ 7) y* — 2 (72°
S 627+ T)y+ 72" —22° — 4222 xt -2y (3 (2
51822 - Mz +7)y°

— 14z

2+
+621 — 62 +3)y? — (921 +142° — 1422 4 1z +9) y + 27 + 722+ 72
+1)a® + (22 (112" + 62° = 6627 + 62 + 11) ° + 22 (52° + 132" — 227 —
132 +5) y° + (112° + 262° + 4427 — 662° + 4422 + 262 + 11) y* + (62° — ¢
21— 662° — 6627 — 4z + 6) y® — 2 (3327 + 22° — 2227 + 22+ 33) y? + (62° + 26
224262+ 6) y + 1122 + 102 + 11) 2 — 2 (22 (52 + 322 + 32+ 5) y° + 2 (222"

+52° — 2227 + 5z + 22) y' + (52° + 52" — 262° — 2627 4 5)y° + (32"

222° — 2627 — 222+ 3) y® + (32° + 522 + 52+ 3) y + 522 + 222 + 5) w + 1527 + 22

+2y(z = 12(z + 1) + 23 (z = 1)%2(z + 1) + 52 (152 + 22 + 15) + 3 (152

=22 = 9022 — 22 +15) +15] / [(x = 1)*(y — 1)*(wy — 1)*(z — 1)*(yz — 1)°

(ayz = 1] = [Az + Dy + Dyz +1) (—22%" + 42z + D)y + (22 + 1)

Az + Ny 4z (P - 1) (1722 — 1) + 2 (Pyt —d2(z + 1)y - (P4 1) 82

+4(z + 1)y +1) — Dlog(a +1)] / [(x — 1)*z(y — 1)*(yz — 1)*] — [4(y + 1)(xy
H1)(z+1) (2 (2 =4z — 1) y* +da(z +1) (22 = 1) p° — (2? +1) (2* — 42— 1)

v =A@+ 1) (2 = 1) y+ 2% — 4z — 1) log(zy + 1)] / [w(y — 1)*y(zy — 1)*(=—

1] = 4z + Dlyz + 1) (#%°=7 + 22" (daly + 1) +5)2° — ay® ((4°+

Da? —d(y+ Do —3) 2° — o (dyly + Da® +5 (12 + 1) 2? + 4y + Do +1) 2+

y (v —dyy+1)2® =3 (y* + 1) 2 — 4y + 1)) 2° + (527 + ¢ +4x(y + 1)

y+1) 2%+ ((Bx +4)y +4)z — 1) log(xyz + 1)] / [zy(z — 1)°2(yz — 1)*(ayz — 1)°])]
/@ + 12y + 1) (ay + 1) (2 + 1) (yz + 1)*(xyz + 1)?] dodydz 14
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Box integrals
The following integrals appear in numerous applications:

Bu(s) = /01---/01(r12+--~+r3)5/2 dR
Buls) = [ [ (- al et (aa?)” aRag

» B,(1) is average distance of a random point from the origin.

» Ap(1) is average distance between two random points.

» B,(—n+ 2) is average electrostatic potential in an n-cube whose origin has a unit
charge.

» Ap(—n+2) is average electrostatic energy between two points in a uniform
n-cube of charged “jellium.”

» Recently integrals of this type have arisen in neuroscience, e.g. the average
distance between synapses in a mouse brain.

» D. H. Bailey, J. M. Borwein and R. E. Crandall, “Box integrals,” Journal of Computational and Applied
Mathematics, vol. 206 (2007), pg. 196-208.
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Sample evaluations

of box integrals

n ) Bn(s)
any | even s >0 rational, e.g., : Bx(2) =2/3
1 s# -1 lerl

2 -4 —i %

2 -3 —Vv2

2 -1 2log(1 ++/2)

2 1 3V2+ g log(1+v2)

2 3 7f+ log(1 + v'2)

2 s# 2 2+s*2F1(O7 5:3:-1)

3 -5 —3V3-— &

3 -4 2arctan %

3 -2 —3G + 2rmlog(1+v2) +3 Tir(3 —2V2)
3 -1 —1m+ 3log (2+ V3)

3 1 W3- Lm+llog(2+V3)
3 3 23— &m— Llog(2+V3)

Here F is hypergeometric function; G is Catalan; Ti is Lewin's inverse-tan function.
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Sample evaluations of delta integrals

n s An(s)

3 7 $_16v2 4 293

3 | -3,-4,-5,-6 00

3| 2 | 2r—126+12Ti2 (3-2v2) +6rlog (1+ v2) +2log2 — § log3 — 8v2arctan ( ;)
3 -1 2 2742 2—5f+2|og(1+f)+12|og(1+f) 4log (2 +/3)

3 1 ~0 a4 275\/+2|0g(1+f)+8|0g(1+

3 3 Tt s V2+ 5 V342 log (14+V2) + Iog( )
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Ramble integrals

Continuing some earlier research [see refs
below]|, we considered

wifs)= [

which is the s-th moment of the distance
to the origin after n steps of a uniform
random walk in the plane, with unit steps
in a random direction.

S

dx

n
2 : e27TXkI’

k=1

>

1. J. M. Borwein, D. Nuyens, A. Straub and
J. Wan, “Some arithmetic properties of short
random walk integrals,” Ramanujan Journal.

2. J .M. Borwein, A. Straub and J. Wan, 5 4 z 2
“Three-step and four-step random walk !
integrals,” Experimental Mathematics.
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Complex plane plot of W,
3
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Some ramble integral results

Wj(0) = /15/6 log(2sin(my))dy = %Cl <g>

/6

3 3v3

w2 =2+ 201(3) - 57
, 7¢(3
wi0) = L¢3

1 X o X
W(0) = log(2) — 7 — /0 ey —1) / R

X X

—log(2) 7~ n [~ log(x)§ () A(x)ax

W’ (0) = n/ooo <|og <)2<) - 7)2 Jg7H(x) A (x)dx

Wi(~1) = (log 2 — 7) Wa(~1) / " log(x)  (x)dx

W) = [ T )k (x) (1 - — log(2x)) dx
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1000- dlglt computations of W/(0) using Sidi's extrapolation scheme

Precision | Iterations Time 30-digit numerical values

3 200 159 123 | 0.3230659472194505140936365107238 .. .
400 320 2046
1000 802 | 106860

5 200 159 249 | 0.5444125617521855851958780627450. . .
400 319 2052
1000 801 | 106860

7 200 157 249 | 0.7029262924769672667878239443952 . ..
400 318 2050
1000 800 | 106860

9 200 156 248 | 0.8241562395323886948205228248496. . .
400 317 2120
1000 799 | 106800

11 200 155 247 | 0.9218508867326536975658915279703. ..
400 316 4123
1000 796 | 213480

13 200 154 246 | 1.0035835304893201106044538743208...
400 314 4113
1000 796 | 213540

15 200 152 245 | 1.0738262172568560361842527815003. ..
400 313 4096
1000 795 | 213480

17 200 151 244 | 1.1354107037674110729532392500429. ..
400 312 4104
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Elliptic integral functions

The research with ramble integrals led us to study integrals of the form:
1
I(no, n1, na, n3, ng) := / x™K™(x)K'™(x)E™(x)E™(x)dx,
0

where K, K', E, E’ are elliptic integral functions:

1 dt
K(x) :=
) /o V(1= )1 - x212)
K'(x) = K(V1 - x2)

1 1—X2t2
E(x ::/ —_—dt
() 0 V1-—1t2

E'(x) :== E(V1 - x?)
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Relations among the / integrals
Thousands of relations have been found among the / integrals, using PSLQ. For
example, among the class with ng < D; =4 and ny + ny + n3 + ny = D, = 3 (a set of

100 integrals), we found that all can be expressed in terms of an integer linear
combination of 8 simple integrals. For example:

1 1 1 1 1
81/ x3K2(x)E(x)dx = —6/ K3(x)dx — 24/ x2K3(x)dx + 51/ x3K3(x)dx + 32/ x*K3(x)dx
0 0 0 0 0
1 1 1 1 1
—243/ 3K (x)E(x)K'(x)dx = —59/ K3(x)dx + 468/ x2K3(x)dx + 156/ x3K3(x)dx — 624/ x*K3(x)dx -
0 0 0 0 0
1 1 1 1
—20736/ x*E2(x)K'(x)dx = 3901/ K3(x)dx — 3852/ x?K3(x)dx — 1284/ x3K3(x)dx + 5136/X4K3(X)(
0 0 0 0

1 1 1
- 2592/ x2K2(x)K'(x)dx — 972/ K(x)E(x)K'(x)dx — 8316/ xK (x)E(x)K’ (x)c
0 0 0
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EE'KK' tanh sinh / PSLQ results

Dy Relations | Basis | Total Precision Basis norm bound Max relation norm
0 1 1 3 4 1500 | 1.582082 x 10%%8 2.236068 x 10°
1 1 5 3 8 1500 | 2.155768 x 10297 3.605551 x 10°
2 1 9 3 12 1500 | 2.155768 x 10297 5.916080 x 10°
3 1 13 3 16 1500 | 2.155768 x 10297 1.679286 x 10!
4 1 17 3 20 1500 | 2.155768 x 10297 6.592420 x 10!
5 1 21 3 24 1500 | 2.155768 x 10297 2.419628 x 102
0 2 4 6 10 1500 | 5.609665 x 102°T 2.109502 x 10!
1 2 12 8 20 1500 | 4.877336 x 1019 5.744563 x 10°
2 2 22 8 30 1500 | 6.109876 x 10195 2.293469 x 10!
3 2 32 8 40 1500 | 6.109876 x 1019 2.293469 x 10!
4 2 42 8 50 1500 | 6.109876 x 1019 1.639153 x 103
5 2 52 8 60 1500 | 6.109876 x 1019 2.428260 x 103
0 3 14 6 20 1500 | 3.871282 x 10°°2 2.664001 x 1072
1 3 34 6 40 1500 | 2.164052 x 106! 8.960469 x 10!
2 3 52 8 60 1500 | 1.496420 x 10197 9.666276 x 102
3 3 72 8 80 1500 | 2.829003 x 1019 2.291372 x 103
4 3 92 8 100 1500 | 8.853827 x 1019 5.860112 x 103
5 3 112 8 120 1500 | 8.853827 x 1019 9.240898 x 10*
0 4 20 15 35 1500 | 2.689124 x 1019% 1.963656 x 10%
1 4 53 17 70 1500 6.195547 x 109! 2.186030 x 103
2 4 88 17 105 1500 4.059577 x 109! 2.970026 x 10*
3 4 121 19 140 1500 8.856138 x 108! 5.658994 x 10°
4 4 156 19 175 1500 2.759846 x 1082 5.571466 x 10°
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EE'KK' tanh-sinh / PSLQ results, continued

Dy D, | Relations | Basis | Total | Precision | Basis norm bound | Max relation norm
0 5 45 11 56 1500 | 1.256977 x 10142 1.061532 x 10°
1 5 101 11 112 1500 | 2.602478 x 10142 1.025453 x 10°
2 5 155 13 168 1500 | 2.151577 x 10120 3.953731 x 10°
3 5 211 13 224 1500 | 1.314945 x 10120 3.728547 x 10°
4 5 265 15 280 1500 | 5.040597 x 10104 8.658997 x 106
5 5 321 15 336 1500 | 4.186191 x 10194 3.954175 x 1011
0 6 56 28 84 3000 | 2.958413 x 10105 1.748907 x 10°
1 6 138 30 168 3000 2.018080 x 109 2.219430 x 10°
2 6 222 30 252 3000 3.089318 x 10% 6.301251 x 108
3 6 304 32 336 3000 1.324953 x 1092 2.929549 x 1010
4 6 388 32 420 3000 9.312061 x 109! 6.168516 x 1012
5 6 470 34 504 3000 6.616755 x 1080 7.199329 x 1013
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For further details

David H. Bailey and Jonathan M. Borwein, “Hand-to-hand combat with thousand-digit
integrals,” Journal of Computational Science, vol. 3 (2012), 77-86, preprint at:
http://www.davidhbailey.com/dhbpapers/combat .pdf
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Summary

>

Identifying definite integrals, by computing very high-precision numerical values
and then applying PSLQ), is one of the most productive applications of the
experimental mathematics paradigm.

The key challenge for such applications is to compute the integral to extreme
precision. Most schemes taught in numerical analysis courses are not suitable.
Although Gaussian quadrature is faster for some problems, the tanh-sinh scheme
has numerous advantages, including insensitivity to singularities at endpoints, and
a cost for generating abscissas and weights that only increases linearly with n.
We have used the tanh-sinh scheme to compute integrals to as high as 20,000
digit precision.

In some applications, such as the EE’KK' integrals, literally thousands of relations
have been discovered by this approach.

Thanks!
This talk is available at
http://www.davidhbailey.com/dhbtalks/dhb-combat-2017.pdf
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