High-precision arithmetic and PSLQ

David H. Bailey
http://www.davidhbailey.com
Lawrence Berkeley National Lab (retired)
University of California, Davis

October 2, 2017

36

http://www.davidhbailey.com

Numerical reproducibility in scientific computing
A December 2012 workshop on reproducibility in computing, held at Brown University,
USA, noted that
Science is built upon the foundations of theory and experiment validated and
improved through open, transparent communication. ...

Numerical round-off error and numerical differences are greatly magnified as
computational simulations are scaled up to run on highly parallel systems. As
a result, it is increasingly difficult to determine whether a code has been
correctly ported to a new system, because computational results quickly
diverge from standard benchmark cases. And it is doubly difficult for other
researchers, using independently written codes and distinct computer
systems, to reproduce published results.

> V. Stodden, D. H. Bailey, J. M. Borwein, R. J. LeVeque, W. Rider and W. Stein, “Setting the
default to reproducible: Reproducibility in computational and experimental mathematics,”
http://www.davidhbailey.com/dhbpapers/icerm-report.pdf.

36

http://www.davidhbailey.com/dhbpapers/icerm-report.pdf

Numerical reliability

Many applications routinely use either 32-bit or 64-bit IEEE arithmetic, and employ
fairly simple algorithms, assuming that all is well. But problems can arise:

1.

o R~ whN

Large-scale, highly parallel simulations, running on systems with hundreds of

thousands or millions of processors — numerical sensitivities are greatly magnified.

Certain applications with highly ill-conditioned linear systems.

Large summations, especially those involving + /- terms and cancellations.
Long-time, iterative simulations (such as molecular dynamics or climate models).
Computations to resolve small-scale phenomena.

Studies in computational physics and experimental mathematics.

D. H. Bailey, R. Barrio, and J. M. Borwein, “High precision computation: Mathematical physics
and dynamics,” Applied Mathematics and Computation, vol. 218 (2012), pg. 10106-10121.

3/36

Analysis of collisions at the Large Hadron Collider

» The 2012 discovery of the Higgs boson at the ATLAS experiment in the LHC
relied crucially on the ability to track charged particles with exquisite precision (10
microns over a 10m length) and high reliability (over 99% of roughly 1000
charged particles per collision correctly identified).

» Software: 5 millions line of C++ and Python code, developed by roughly 2000
physicists and engineers over 15 years.

> Recently, in an attempt to speed up the calculation, researchers found that merely
changing the underlying math library resulted in some collisions being missed or
misidentified.

Questions:

» How serious are these numerical difficulties?
» How can they be tracked down?

» How can the library be maintained, producing numerically reliable results?

Ways to enhance numerical reproducibility and solve accuracy problems

1. Employ an expert numerical analyst to re-examine every algorithm employed in the
computation to ensure that only the most stable known schemes are being used.

2. Carefully analyze every step of the computation to ascertain the level of numerical
sensitivity at each step.

3. Employ interval arithmetic for large portions of the application (which greatly
increases run time and code complexity).

4. Employ higher-precision arithmetic arithmetic, assisted with some “smart” tools to
help determine where extra precision is needed and where it is not.

Item #4 is often the only practical solution.

5/36

Numerical analysis expertise among U.C. Berkeley graduates

Of the 2010 U.C. Berkeley graduating class, 870 were in disciplines likely to require
technical computing:

» Division of Mathematical and Physical Sciences (Math, Physics, Statistics).
» College of Chemistry.
» College of Engineering (including Computer Science).
Other fields (not counted) that will likely involve significant computing:
» Biology, geology, medicine, economics, psychology, sociology.
Enrollment in numerical analysis courses:
» Math 128A (Introductory numerical analysis required of math majors): 2109.

» Math 128B (A more advanced course, required to do serious work): 24.

Conclusion: Fewer than 2% of U.C. Berkeley graduates who will do technical
computing in their careers have had rigorous training in numerical analysis.

36

Enhancing reproducibility with selective usage of high-precision arithmetic

Problem: Find the arc length of the irregular function
g(x) = x + Yo<k<102 ¥ sin(24x), over the interval (0, 7)
(using 107 abscissa points).

» If this computation is done with ordinary double
precision arithmetic, the calculation takes 2.59 seconds
and yields the result 7.073157029008510.

» If it is done using all double-double arithmetic (31-digit
accuracy), it takes 47.39 seconds seconds and yields the
result 7.073157029007832 (correct to 15 digits).

> But if only the summation is changed to double-double,
the result is identical to the double-double result (to 15
digits), yet the computation only takes 3.47 seconds.

|

e

Y

/
/

Graph of g(x) =
X+ 0<k<102 ¥ sin(2%),
over (0,).

36

Aren't 64 bits enough?
There has been considerable resistance in the scientific computing community to the
usage of high-precision arithmetic. Why?
» Many are persuaded that physical reality fundamentally does not require high
precision, beyond, say, the limits of 64-bit IEEE arithmetic.

» Many believe that numerical sensitivity problems are always due to the usage of
inferior algorithms.

» Some regard the usage of high-precision arithmetic as “cheating” or “sinful”
(because it is too easy?).

» Some complain that easy-to-use high-precision arithmetic software facilities are
not widely available, or the computational cost is too great.

But none of these excuses are valid.

» D. H. Bailey, R. Barrio, and J. M. Borwein, “High precision computation: Mathematical physics
and dynamics,” Applied Mathematics and Computation, vol. 218 (2012), pg. 10106-10121.

8/36

Innocuous example where standard 64-bit precision is inadequate

Problem: Find a polynomial to fit the data (1, 1048579, 16777489,
84941299, 268501249, 655751251, 1360635409, 2523398179, 4311748609) for

arguments 0,1,--- ,8. The usual approach is to solve the linear system:
n n n
S 25:1 Xl; e an:1 Xgl 40 X;kzl Y
n
Dok Xk D1 Xk T D Xk a | D k1 Xk Yk
n n+1 n 2 n n
Dok XE Dkt Xk e Y e Xk an D k=1 Xk Yk

A 64-bit computation (e.g., using Matlab, Linpack or LAPACK) fails to find the
correct polynomial in this instance, even if one rounds results to nearest integer.

However, if Linpack routines are converted to use double-double arithmetic (31-digit
accuracy), the above computation quickly produces the correct polynomial:

f(X) = 1+ 1048577X4 + X8 =1+ (220 + 1)X4 + X8

36

Innocuous example, cont.

The result on the previous page can be obtained with double precision using Lagrange
interpolation or the Demmel-Koev algorithm. But few scientists, outside of expert
numerical analysts, are aware of these schemes.

Besides, even these schemes fail for higher-degree problems.

For example: (1,134217731, 8589938753, 97845255883, 549772595201,
2097396156251, 6264239146561, 15804422886323, 35253091827713,
71611233653971, 135217729000001, 240913322581691, 409688091758593)
is generated by:

f(x) = 1+134217729x% + x2 = 1+ (277 + 1)x® + x*?

Lagrange interpolation and Demmel-Koev fail for this problem, but a straightforward
Linpack scheme, implemented with double-double arithmetic, works fine.

10/36

Some applications where high precision is essential

© 0N RN

[T O -y
= O

Planetary orbit calculations (32 digits).

Supernova simulations (32-64 digits).

Climate modeling (32 digits).

Optimization problems in biology and other fields (32 digits).
Coulomb n-body atomic system simulations (32-120 digits).

Schrodinger solutions for lithium and helium atoms (32 digits).

Electromagnetic scattering theory (32-100 digits).
Scattering amplitudes of fundamental particles (32 digits).
Discrete dynamical systems (32 digits).

The Taylor algorithm for ODEs (100-600 digits).

. Problems in experimental mathematics (100-50,000 digits).

11/36

Coulomb n-body atomic system simulations

» Alexei Frolov of Queen’s University in Canada has used high-precision arithmetic
to solve a generalized eigenvalue problem that arises in Coulomb n-body
interactions.

> Matrices are typically 5,000 x 5,000 and are very nearly singular.

» Computations typically involve massive cancellation, and high-precision arithmetic
must be employed to obtain numerically reproducible results.

» Frolov has also computed elements of the Hamiltonian matrix and the overlap
matrix in four- and five-body systems.

» These computations typically require 120-digit arithmetic.

Frolov: “We can consider and solve the bound state few-body problems ... beyond our
imagination even four years ago.”

> A. M. Frolov and D. H. Bailey, "Highly accurate evaluation of the few-body auxiliary functions and
four-body integrals,” Journal of Physics B, vol. 36, no. 9 (14 May 2003), pg. 1857-1867.

12 /36

Taylor's method for ODEs with high-precision arithmetic

1 period - TIDES (16 digits)
16 periods -TIDES (300 digits)

. First point TIDES (16 digits)
First-Last point TIDES (300 digits)

* Last point TIDES (16 digits)

Numerical integration of the L25-R25 unstable periodic orbit for the Lorenz model
during 16 time periods using TIDES with 300 digits, versus 1 time period using DP.

13/36

What is needed for high-precision floating-point software?

—

. A rock-solid-reliable arithmetic engine, with precision scalable to 1,000,000 digits
or more — 1,000 or even 10,000 digits is no longer enough.

2. Highly efficient algorithms, so single-processor performance is as fast as possible,
given constraints of portability and ease of installation.

3. A thread-safe design to facilitate parallel processing, both thread-based (low-level)
and message-passing (high-level) parallelism.

4. A comprehensive library of tuned transcendentals and special functions:
sin, cos, exp, gamma, incomplete gamma, polylogarithms, Bessel functions, etc.

5. High-level language interfaces for C4++, Fortran-90 and other languages.
6. Interoperability with Maple and Mathematica.

14 /36

Free software for high-precision computation

1.

ARPREC: Arbitrary precision, with numerous algebraic and transcendental
functions. High-level interfaces for C++ and Fortran-90.
http://crd.1lbl.gov/~dhbailey/mpdist.

GFORTRAN: Now provides full REAL*16 (IEEE 128-bit, or 34-digit) support.
GMP: Produced by a volunteer effort and distributed under the GNU license.
http://gmplib.org.

MPFR: C library for multiple-precision floating-point computations with exact
rounding, based on GMP. http://www.mpfr.org.

MPFR++: High-level C++ interface to MPFR.
http://perso.ens-lyon.fr/nathalie.revol/software.html.
MPFUN9Q: Similar to ARPREC, but is written entirely in Fortran-90 and provides
only a Fortran-90 interface. http://crd.1bl.gov/~dhbailey/mpdist.
QD: Performs “double-double” (31 digits) and “quad-double” (62 digits)
arithmetic. High-level interfaces for C+-+ and Fortran-90.
http://crd.1bl.gov/~dhbailey/mpdist.

15/36

http://crd.lbl.gov/~dhbailey/mpdist
http://gmplib.org
http://www.mpfr.org
http://perso.ens-lyon.fr/nathalie.revol/software.html
http://crd.lbl.gov/~dhbailey/mpdist
http://crd.lbl.gov/~dhbailey/mpdist

How do multiprecision packages operate?

» A multiprecision floating-point number is represented as a string of DP floats or
long integers, typically 53 or 64 bits per word, with the first few words holding
sign, exponent and working precision (see below).

» Addition and subtraction are performed using relatively straightforward extensions
of familiar schemes.

» Multiplication is performed using FFTs (see below).

» Division is performed using Newton iterations, with a level of working precision
that approximately doubles with each iteration.

» Square roots are performed using Newton iterations, similar to division.

» Transcendental functions (cos, sin, exp, log, etc.) are performed using series
expansions, after transforming the input into a small argument range. For higher
precision levels, quadratically convergent iterations are used.

16 /36

How to perform high-precision multiplication using FFTs
Let A= (ao, a1, a2, - ,an—1) and B = (bo, b1, bz, -+ , by—1), where each element
stores successive bits, and extend A and B to length 2n by padding with zeroes. Let
C = A x B. Then except for releasing carries,
2n—1

Ck = Z ajbk_j,
j=0

where we add 2n to the b subscript if it is negative. Then
C=(C, G, G, -, Cp2)
= (aobo, agb1 + a1bg, apbp + a1b1 + azbo, - - - , an—1bp—1).
This is merely the convolution of A and B, which can be computed using FFTs:
C = F(F(A)- F(B)),
where (F(A)- F(B)) means the element-wise product of the sequences F(A) and F(B).

For sufficiently large precision levels, FFT-based multiplication is many times faster

than conventional grade-school multiplication — 5nlog, n instead of n? operations. o

Thread safety: A major challenge for arbitrary precision software

Since run times are greatly magnified by high-precision arithmetic, parallel processing is
increasingly essential.

However, almost all existing arbitrary-precision packages are not thread-safe at the
application user level, and this kills thread-based parallelization

» Almost all high-level packages use global variables, and these variables are deadly
for thread safety.

» Most global variables can be dispensed with, but not the working precision level,
which is changed frequently within the package itself and often by users also.

» The only reasonable design for user programming is via operator overloading,
available in languages such as Fortran-90 and C++, but overloading does not
permit the working precision level to be passed.

What can be done?

18 /36

MPFUN2015: A thread-safe arbitrary precision package

DHB has written a package (approx. 50,000 lines of code) for arbitrary precision
floating-point computation. It is available in two versions:

» MPFUN-Fort: Completely self-contained, all-Fortran version. Compilation is a
simple one-line command, which completes in a few seconds.

» MPFUN-MPFR: Calls the MPFR package for lower-level operations. Installation
is significantly more complicated (since GMP and MPFR must first be installed),
but performance is roughly 3X faster. We used MPFUN-MPFR in in the Poisson
polynomial study.

Both versions include a high-level language interface, using Fortran custom datatypes
and operator overloading — for most applications, only a few minor changes to
existing double precision code are required.

A C++ version is planned.

Full details of design, algorithms, installation and usage are given in

» D. H. Bailey, “"MPFUN2015: A thread-safe arbitrary precision computation package,”

http://www.davidhbailey.com/dhbpapers/mpfun2015.pdf.
19/36

http://www.davidhbailey.com/dhbpapers/mpfun2015.pdf

Experimental mathematics: Discovering new mathematical results

Methodology:
1. Compute various mathematical entities (limits, infinite series sums, definite
integrals, etc.) to high precision, typically 100-10,000 digits.
2. Use algorithms such as PSLQ to recognize these numerical values in terms of
well-known mathematical constants.
3. When results are found experimentally, seek formal mathematical proofs of the
discovered relations.
Many results have recently been found using this methodology, both in pure
mathematics and in mathematical physics.
If mathematics describes an objective world just like physics, there is no reason why

inductive methods should not be applied in mathematics just the same as in physics.
—D Kurt Godel

20/36

The PSLQ integer relation algorithm
Given a vector (x,) of real numbers, an integer relation algorithm finds integers (a,,)
such that

aix1+axo+--+apx, = 0

(to within the precision of the arithmetic being used), or else finds bounds within
which no relation can exist.

Helaman Ferguson’s PSLQ algorithm is the most widely used integer relation
algorithm, although variants of the LLL algorithm can also be used.

Integer relation detection requires very high numeric precision, both in the input data
and in the operation of the algorithm — at least nd digits, where d is the size in digits
of the largest |a;|.

1. H. R. P. Ferguson, D. H. Bailey and S. Arno, "“Analysis of PSLQ, an integer relation finding
algorithm,” Mathematics of Computation, vol. 68, no. 225 (Jan 1999), 351-3609.
2. D. H. Bailey and D. J. Broadhurst, “Parallel integer relation detection: Techniques and

applications,” Mathematics of Computation, vol. 70, no. 236 (Oct 2000), 1719-1736.
21/36

Helaman Ferguson’s “Umbilic Torus SC” sculpture at Stony Brook Univ.

22/

36

PSLQ), continued

» PSLQ constructs a sequence of integer-valued matrices B, that reduce the vector
y = x - By, until either the relation is found (as one of the columns of matrix B)),
or else precision is exhausted.

> A relation is detected when the size of smallest entry of the y vector suddenly
drops to roughly “epsilon” (i.e. 107P, where p precision in digits).

» The size of this drop can be viewed as a “confidence level” that the relation is not
a numerical artifact: a drop of 204 orders of magnitude almost always indicates a
real relation.

Efficient variants of PSLQ:
> 2-level and 3-level PSLQ perform almost all iterations with only double precision,
updating full-precision arrays as needed. They are hundreds of times faster than
the original PSLQ.
» Multi-pair PSLQ dramatically reduces the number of iterations required. It was
designed for parallel systems, but runs faster even on 1 CPU.

23 /36

Decrease of log 10(min |y;|) in multipair PSLQ run

50 100 150 200

=50

-150

-200

24 /36

Application of multipair PSLQ

One simple but important application of multipair PSLQ is to recognize a computed
numerical value as the root of an integer polynomial of degree m.

Example: The following constant is suspected to be an algebraic number:
o = 1.232688913061443445331472869611255647068988824547930576057634684778 . . .
What is its minimal polynomial?

Method: Compute the vector (1,,a?,---,a™) for m = 30, then input this vector to
multipair PSLQ.

Answer (using 250-digit arithmetic):
0 = 697 — 1440 — 2052002 — 98280a° — 102060a* — 1458a° + 80a® — 439200

+ 5383800 — 3364200° + 1215010 — 80a'? — 561603 — 135540a'* — 540a!°
+ 400 — 73800t + 13502 — 10a%* — 1802% + %0

25 /36

Apéry-like summations

Apéry’s proof of the irrationality of ((3) has prompted considerable effort to extend
these results to larger integer arguments. The formulas in question are

> 1
C(2) = 3[;1 k2 (2kk)7 (1)
_ 5 X (_1)k+1
C(3) - 5[(21 k3 (2kk)) (2)
36 — 1
g(4) - T? k=1 k* (2kk) ‘ (3)

Is there an analogous formula with a rational coefficient for {(5) or higher? A PSLQ
computation with 10,000 digits ruled this out. What about multi-term relations?

26 /36

Some multi-term relations found by PSLQ

27 /36

General formulas
Using bootstrapping and an application of the “Pade” function (which in both
Mathematica and Maple produces Padé approximations to a rational function satisfied
by a truncated power series), the following general results were discovered:

5 (—1)k+1 (14 axt m?
S w1 e 1L (1)

i 1 _3§: 1 "1:[1 1—4x2/m?
k:1k2—x2_ k2(2kk)(1—X2/k2)m:1 1—x2/m?

k=1

Power series expansions for a specific x yield all the results for {(n).

The second formula was proven by the Wilf-Zeilberger method, a computer-based
scheme that yields a rigorous proof. It was thus discovered and proven by computer.

» D. H. Bailey and J. M. Borwein, “Computer-assisted discovery and proof,” T. Amdeberhan and
H

D
V. H. Moll, ed., Tapas in Experimental Mathematics, AMS, May 2008, pg. 21-52.

28 /36

The tanh-sinh numerical integration algorithm
Given f(x) defined on (—1,1), define g(t) = tanh(7/2 - sinh t). Then setting x = g(t)
yields

1
[fea = [feene <Y W)
_1 _ f—
where x; = g(h;) and w; = g’(h;j) can be precomputed for a given h. Since g’(t) goes
to zero very rapidly for large t, the integrand f(g(t))g’(t) typically is a nice
bell-shaped function, so that the simple summation above converges very rapidly.
Reducing h by half typically doubles the number of correct digits.

We have found that tanh-sinh is the best general-purpose integration scheme for
functions with vertical derivatives or singularities at endpoints, or for any function at
very high precision (> 1000 digits).

1. D. H. Bailey, X. S. Li and K. Jeyabalan, “A comparison of three high-precision quadrature
schemes,” Experimental Mathematics, vol. 14 (2005), no. 3, pg. 317-329.

2. H. Takahasi and M. Mori, “Double exponential formulas for numerical integration,” Publications
of RIMS, Kyoto University, vol. 9 (1974), pg. 721-D741.

29 /36

Ising integrals from mathematical physics
We applied our methods to study three classes of integrals: C, are connected to
quantum field theory, D, arise in the Ising theory of mathematical physics, while the
E,, integrands are derived from Dn:

co— dug du,
T T
S 1(u,+1/u,)) "

u,fuj- 2
D — / / Ii<j u,+uj> duy du,
h = = da
" SPa(y 4 1)) B
2

E, = 2/ / Y4 dt> dt3 - - - dt,
<k<n Uk+UJ

where in the last line v, = tyto - - - ty.

D. H. Bailey, J. M. Borwein and R. E. Crandall, “Integrals of the Ising class,” Journal of Physics A:

Mathematical and General, vol. 39 (2006), pg. 12271-12302.
30

36

Limiting value of C,: What is this number?

Key observation: The C, integrals can be converted to one- dimensional integrals
involving the modified Bessel function Kp(t):

2 oo
G = — tKy (t) dt
n! Jo

High-precision numerical values, computed using this formula and tanh-sinh
quadrature, approach a limit. For example:

Ciooa = 0.6304735033743867961220401927108789043545870787 . . .

What is this number? We copied the first 50 digits into the online Inverse Symbolic
Calculator (ISC) at https://isc.carma.newcastle.edu.au. The result was:

lim C, = 2e 2.
n—0o0

where v denotes Euler's constant. This is now proven.

31/36

https://isc.carma.newcastle.edu.au

Other Ising integral evaluations found using PSLQ

D;s = 8+4472/3-27L_3(2)

Dy, = 47%/9—-1/6—7((3)/2
E, = 6—28log2
Es = 10—27% —8log2+ 32log??2

E; = 22—82((3)—24log2+ 176log®2 — 256(log*®2)/3
+167%log 2 — 2272 /3

Es = 42—1984Lis(1/2) +1897*/10 — 74¢(3) — 1272¢(3) log 2 + 407? log? 2
6272 /3 + 40(72 log 2) /3 + 88 log* 2 + 464 log® 2 — 40 log 2

where (is the Riemann zeta function and Li,(x) is the polylog function. Es remained a
“numerical conjecture” for several years, but was proven in March 2014 by Erik Panzer.

Es was reduced to a 3-D integral of a 60-line integrand, which was evaluated using
tanh-sinh quadrature to 250-digit arithmetic using over 1000 CPU-hours on a highly
parallel system. The PSLQ calculation required only seconds. 32/36

Algebraic numbers in Poisson potential functions
Lattice sums arising from the Poisson equation have been studied widely in
mathematical physics and image processing. We numerically discovered, and then
proved, that for rational (x,y), the 2-D Poisson potential function satisfies

1 cos(mmx) cos(nmy) 1
, = = = =lo
gbz(x y) 7T2 m,n odd m? + n? T =

where « is algebraic, i.e., the root of an integer polynomial
0 = ag+ a4 aa’+ -+ a,a”

The minimal polynomials for these o were found by PSLQ calculations, with the
(n + 1)-long vector (1,c, a2, -+, a") as input, where o = exp(m¢o(x, y)). PSLQ
returns the vector of integer coefficients (ag, a1, a2, - - , ap) as output.

> D. H. Bailey, J. M. Borwein, R. E. Crandall and J. Zucker, “Lattice sums arising from the Poisson
equation,” Journal of Physics A: Mathematical and Theoretical, vol. 46 (2013), pg. 115201,
http://www.davidhbailey.com/dhbpapers/PoissonLattice.pdf.

33/36

http://www.davidhbailey.com/dhbpapers/PoissonLattice.pdf

Samples of minimal polynomials found by PSLQ
k Minimal polynomial for exp(8m¢2(1/k,1/k))

5 1452a—260°—12a°+ o

6 1—28a+6a%—28a°+a*

7 —1—196a + 130202 — 147560° + 15673a* + 42168a° — 111916a° + 822644
—35231a® + 19852a° — 295401° — 308att + 7al?

8 1-—88a+ 9202 — 872a° + 1990a* — 872a° + 92a° — 88a’ + of

9 —1—534a + 10923a% — 3428640° + 2304684a* — 7820712a° + 13729068a°
—223215840" 4 3977598608 — 444310440° + 198998820 + 35465760
—8458020a'? + 40091760 — 2733480 + 1213920!°
—11385a!° — 342017 + 3a!®
10 1 —216a + 860a> — 744a° + 4540* — 74405 4 860a° — 2160" + o
The minimal polynomial for exp(8m¢2(1/32,1/32)) has degree 128, with individual
coefficients ranging from 1 to over 10%° (see next viewgraph). This computation
required 10,000-digit precision. Most of the time was spent on PSLQ, not quadrature.

Other polynomials required up to 50,000-digit precision, with runs extending to several
days. The ARPREC software failed on at least one of these problems.

34 /36

192-degree minimal polynomial found by multipair PSLQ for x = y = 1/35

p cal pattern is strong evidence that the result is correct. s

Summary

» High-precision arithmetic can now be performed rapidly by means of widely
available, easy-to-use software.

» High-precision arithmetic is required by the PSLQ algorithm, which finds integer
relations among a set of computed floating-point real numbers.

» This combined capability (HP arithmetic and PSLQ) is a tool of enormous power
for experimental mathematics.

Thanks!

This talk is available at
http://www.davidhbailey.com/dhbtalks/dhb-hiprec-2017.pdf

36 /36

http://www.davidhbailey.com/dhbtalks/dhb-hiprec-2017.pdf

