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388 published journal articles; another 103 in
refereed conference proceedings.

ISI Web of Knowledge lists 6,593 citations from
351 items; one paper has been cited 666 times.

His work spanned pure mathematics, applied
mathematics, optimization theory, computer
science, mathematical finance, and experimental
mathematics.

Borwein sought to do research that is accessible,
and to highlight aspects of his work that a broad
audience (including both researchers and the lay
public) could appreciate.

More information, including memorials and links to
nearly 1700 publications, preprints and talks:
http://www. jonborwein.org.
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Standing on the shoulders of giants

The following study is a paradigm of multidisciplinary experimental mathematics, as it
crucially relies on many highly talented contributions:

» Work by Brent, Zimmermann, Lefevre and other developers of the MPFR
package, which was used for extreme precision computation.
» An enormous software infrastructure behind our computer code:
» GNU compilers and Apple’s Berkeley Unix software.
» Fortran custom datatypes and operator overloading.
» OpenMP software for parallel processing.
» Ferguson's PSLQ algorithm (as far as we are aware, this study involves the largest
computations ever done using PSLQ).
» Crandall’s work applying the Poisson equation to image enhancement.
» Jon Bowein's derivation of a much more rapidly convergent algorithm for the
Poisson phi function.
» Numerous studies involving elliptic curves, theta functions, ideals and fields.
A key observation by Jason Kimberley of the University of Newcastle, Australia.
A concluding proof by Watson Ladd, a graduate student at U.C. Berkeley.
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The PSLQ integer relation algorithm
Given a vector (x,) of real numbers, an integer relation algorithm finds integers (a,,)
such that

aix1t+axo+---+ax, = 0
(to within the precision of the arithmetic being used), or else finds bounds within
which no relation can exist.

Helaman Ferguson's PSLQ algorithm is the most widely used integer relation
algorithm, although variants of the LLL algorithm can also be used.

Integer relation detection (using PSLQ or any other algorithm) requires very high
numeric precision, both in the input data and in the operation of the algorithm.

1. H. R. P. Ferguson, D. H. Bailey and S. Arno, “Analysis of PSLQ, an integer relation finding
algorithm,” Mathematics of Computation, vol. 68, no. 225 (Jan 1999), 351-3609.

2. D. H. Bailey and D. J. Broadhurst, “Parallel integer relation detection: Techniques and
applications,” Mathematics of Computation, vol. 70, no. 236 (Oct 2000), 1719-1736.
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Helaman Ferguson’s “Umbilic Torus SC” sculpture at Stony Brook Univ.
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PSLQ), continued

» PSLQ constructs a sequence of integer-valued matrices B, that reduce the vector
y = x - By, until either the relation is found (as one of the columns of matrix B)),
or else precision is exhausted.

> A relation is detected when the size of smallest entry of the y vector suddenly
drops to roughly “epsilon” (i.e. 107P, where p precision in digits).

» The size of this drop can be viewed as a “confidence level” that the relation is not
a numerical artifact: a drop of 204 orders of magnitude almost always indicates a
real relation.

Efficient variants of PSLQ:
> 2-level and 3-level PSLQ perform almost all iterations with only double precision,
updating full-precision arrays as needed. They are hundreds of times faster than
the original PSLQ.
» Multi-pair PSLQ dramatically reduces the number of iterations required. It was
designed for parallel systems, but runs faster even on 1 CPU.
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Decrease of log 10(min |y;|) in multipair PSLQ run
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Application of multipair PSLQ

One simple but important application of multipair PSLQ is to recognize a computed
numerical value as the root of an integer polynomial of degree m.

Example: The following constant is suspected to be an algebraic number:

o = 1.232688913061443445331472869611255647068988824547930576057634684778 . . .

What is its minimal polynomial?

Method: Compute the vector (1,,a?,---,a™) for m = 30, then input this vector to
multipair PSLQ.
Answer (using 250-digit arithmetic):
0 = 697 — 1440a — 205200 — 982800 — 1020600* — 1458a° + 80a® — 439200
+ 53838008 — 336420a° + 121501° — 80a!? — 56160a!3 — 13554001* — 54001°
+ 400! — 73800 + 13502° — 1002* — 180° + o*°
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The Poisson potential function

In 2012, Richard Crandall, while investigating techniques to sharpen images, noted
that each pixel was given by a form of the 2-D Poisson potential function:

¢2(X7y) = % Z

m,n odd

cos(mmx) cos(nmy)
m2 + n?

In a 2013 study, we numerically discovered, and then proved the intriguing fact that for
rational (x, y),
1
$2(x,y) = —loga
where « is algebraic, i.e., the root of a some integer polynomial of degree m.
By computing high-precision numerical values of ¢2(x, y) for various specific rational x

and y, and applying a multipair PSLQ program, we were able to produce the explicit
minimal polynomials for o in numerous specific cases.

» D. H. Bailey, J. M. Borwein, R. E. Crandall and J. Zucker, “Lattice sums arising from the Poisson
equation,” Journal of Physics A: Mathematical and Theoretical, vol. 46 (2013), 115201.
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Samples of minimal polynomials found by multipair PSLQ

~N O O »n

O 0

10

Minimal polynomial corresponding to x =y = 1/s:

14520 — 2602 — 1203 + o

1—28a + 602 — 283 + o

—1 — 196a + 1302a% — 1475602 + 15673 + 421680° — 11191608 + 82264a”
—35231a8 + 1985202 — 2954019 — 308a!! + 7a!?

1 — 88a + 92a2 — 87203 + 19900* — 872a° + 92ab — 88a” + af

—1 — 534 + 1092302 — 34286405 + 23046840* — 7820712a° + 137290680°
—223215840" + 3977598608 — 444310440° 4+ 19899882010 + 354657601
—84580200'? + 400917603 — 273348a* + 121392a/°

—11385a1% — 342017 + 318

1 — 216a + 86002 — 74403 + 454a* — 7440° 4+ 860a° — 21607 + of

These computations are very expensive. The case x = y = 1/32, for instance, required
10,000-digit arithmetic and ran for 45 hours. Other runs, using even higher precision,
ultimately failed, evidently due to subtle program bugs. Help!
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Kimberley's formula for the degree of the polynomial
Based on our preliminary results, Jason Kimberley of the University of Newcastle,
Australia observed that the degree m(s) of the minimal polynomial associated with the
case x =y = 1/s appears to be given by the following:

Set m(2) = 1/2. Otherwise for primes p congruent to 1 mod 4, set m(p) = int?(p/2),
where int denotes greatest integer, and for primes p congruent to 3 mod 4, set
m(p) = int (p/2)(int (p/2) + 1). Then for any other positive integer s whose prime

factorization is s = py'p5? - - - pgr,

m(s) = 4T p2 ™ m(py).
i=1

Does Kimberley's formula hold for larger s? Why?

What is the true mathematical connection between the pair of rationals (x, y) and the

algebraic number o7
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Three improvements to the Poisson polynomial computation program

1. MPFUN2015: A new thread-safe multiprecision package.
» Speedup: 3X

2. A new 3-level multipair PSLQ program.
» Speedup: 4.2X

3. Parallel implementation on a 16-core system.
» Speedup: 12.2X

Overall speedup: 156X
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Thread safety in high-precision software
Even though parallel implementations are often required for high-precision
computations, most high-precision software packages are not thread-safe and thus
cannot be used in shared memory parallel programs.
» Many packages employ global read/write variables, e.g., for transcendental
function evaluation, which ruin thread safety.
» The working precision level, a global variable that is changed frequently within the
package itself and often by users also, is particularly troublesome.

One bright spot: the MPFR package

Thread-safe (if compiled with the thread-safe option).
Correct rounding to the last bit.

Fastest package currently available.

Based on the Gnu multiprecision package (GMP).
Low-level arithmetic and transcendental functions only.

v
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MPFUN2015: DHB's thread-safe arbitrary precision package

Available in two versions:

» MPFUN-Fort: Completely self-contained, all-Fortran version. Compilation is a
simple one-line command, which completes in a few seconds.

» MPFUN-MPFR: Calls the MPFR package for lower-level operations. Installation
is significantly more complicated (since GMP and MPFR must first be installed),
but performance is roughly 3X faster. We used MPFUN-MPFR in this study.

Both versions include a high-level language interface, using custom datatypes and
operator overloading — for most applications, only a few minor changes to existing
double precision code are required.

Designed for high-level Fortran programs; a C++ version is planned but not written.

» D. H. Bailey, “"MPFUN2015: A thread-safe arbitrary precision computation package,”
manuscript, http://www.davidhbailey.com/dhbpapers/mpfun2015.pdf.

> Software is available at http://www.davidhbailey.com/dhbsoftware.
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New three-level multipair PSLQ program

Employs three levels of numeric precision:
» Ordinary double precision.
> Medium precision, typically 100-2000 digits.
» Full precision, typically many thousands of digits.

When an entry of the double precision reduced vector is smaller than 10714, the
medium precision arrays are updated by matrix multiplication.

Similarly, when an entry of the medium precision reduced vector is smaller than the
medium precision “epsilon,” the full-precision arrays are updated by matrix
multiplication.

Substantial care must be taken to manage this three-level hierarchy, and to correctly
handle numerous atypical scenarios.
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Jon Borwein's fast algorithm to compute ¢, (x, y)
0>(z,q9)04(z, q
) = L gD
01(z,q)03(z,q)|’
where g = e77 and z = 5 (y + ix). Compute the four theta functions using the
following very rapidly convergent formulas involving complex variables:

u(z,q) =2 3 (~1) gV 4 in((2k — 1)2),

02(2,9) =2 q2* I cos((2k — 1)2),
k=1

03(z,q) =1+2 Z g~ cos(2kz),
k=1

Oa( zq—l—i—ZZ )Kq* cosZkz)
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High-level computational algorithm

1. Given rationals x = p/s and y = q/s, select a conjectured minimal polynomial
degree m(s) (using Kimberley's formula) and other parameters for the run.

2. Calculate ¢(x, y) to P,-digit precision using the formulas from two viewgraphs
above. When done, calculate o = exp(87m¢a(x, y)) and generate the (m + 1)-long
vector X = (1, a,0?,--- ,a™), to P,-digit precision.

3. Apply the three-level multipair PSLQ algorithm to X. For larger problems, employ
a parallel version of the three-level multipair PSLQ code, using the OpenMP
construct DO PARALLEL to perform certain time-intensive loops in parallel.

4. If no numerically significant relation is found, try again with a larger degree m or
higher precision P,. If a relation is found, employ the polynomial factorization
facilities in Mathematica and Maple to ensure that the polynomial is irreducible.
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Application program and libraries for the Poisson calculations

Description Language | Lines of code
Poisson polynomial program® | Fortran 2,000
MPFUN-MPFR package Fortran 12,000
MPFR package C 93,000
GMP package C 83,000
Total 190,000

*This includes the computation of ¢2(x, y) and the 3-level multipair PSLQ program.
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192-degree minimal polynomial found by multipair PSLQ for x = y = 1/35

p cal pattern is strong evidence that the result is correct. o



Timings for the case x =y = 1/35

Multiprecision software | PSLQ code | Cores Run time | Speedup
ARPREC 2-level 1]1.599-10° 1.00
MPFUN-MPFR 2-level 1| 5.249-10° 3.05
MPFUN-MPFR 3-level 1| 1.240-10° 12.90
2 | 7.585 - 10% 21.08

4 | 4.121-10* 38.80

8 | 2.476 - 10* 64.58

16 | 1.021-10* 156.61

The run times are wall-clock run times (in seconds), measured on a 16-core 2.4 GHz
MacPro, in a typically busy environment with similar jobs running on other cores.
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Selected runs (degrees, precision, timings, etc.) for x =y =1/s

s m log4(D) Py P> N M| C| T(sec) | C-T (sec.)
20 | 32 -463.84 | 160 700 1967 0.81 1] 219-10° 2.19-10°
24 | 64 | -1883.78 | 320 | 2200 9297 11.33 | 1| 7.73-10! 7.73- 10!
30 | 64| -1868.01 | 350 | 2300 9064 1133 | 1| 1.02-10? 1.02 - 102
32 | 128 | -7577.07 | 650 | 8200 | 45893 | 168.20 | 1 | 5.13-10° 5.13.10°
34 | 128 | -7574.93 | 650 | 8200 | 45914 | 16820 | 1 | 5.16-10° 5.16 - 10°
36 | 144 | -9570.86 | 750 | 10300 | 62282 | 267.10 | 1 | 9.54-10° 9.54.10°
38 | 180 | -14951.64 | 900 | 16000 | 120984 | 64298 | 1 | 3.88-10* 3.88-10*
40 | 128 | -7580.00 | 650 | 8200 | 45655 | 168.20 | 1 | 5.02-10° 5.02-10°
42 | 192 | -16993.99 | 1000 | 18000 | 150364 | 829.41 | 8 | 1.57-10* 1.26 - 10°
44 | 240 | -26604.14 | 1200 | 28000 | 323762 | 2003.33 | 8 | 7.43-10* 5.94.10°
46 | 264 | -32036.34 | 1350 | 34000 | 476902 | 2921.57 | 16 | 1.06 - 10° 1.70 - 10°
48 | 256 | -30248.55 | 1350 | 32000 | 415316 | 2586.39 | 16 | 8.98 - 10* 1.44 -10°
50 | 200 | -18421.18 | 1000 | 20000 | 168947 | 974.44 | 8 | 2.12-10* 1.69 - 10°
52 | 288 | -38414.49 | 1550 | 41000 | 655291 | 4124.24 | 16 | 2.12-10° 3.40 - 10°

*60 | 256 | -14477.99 | 800 | 16000 | 90371 | 336.41 | 1| 5.28-10° 5.28 - 10°
*64 | 512 | -57816.90 | 1600 | 64000 | 802361 | 5172.79 | 16 | 3.78-10° 2.42.10°

s = denominator; m = degree; D = detection level; Pi = medium precision; P, = full precision; N =

number of iterations; M = Mbytes; C = cores; T = wall clock time; C- T = total core-seconds.
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Palindromic polynomials

From our results, in the case (1/s,1/s) where s is even, the resulting polynomial
appears to be palindromic (ax = ap,—). For instance, when s = 16,

pis(a) = 1 — 1376a" — 125600° — 35504960° + 812417200 — 169589984°
+ 13349649440° — 243077259840 + 238934926108a° — 10430271247040°
+ 2328675366384 — 3219896325280 + 4238551472456
— 102474144300480" + 28552105805904a'* — 558328516879680/"°
+ 700202683090620'°
— 558328516879680/" + 285521058059040™° — 102474144300480/"°
+ 42385514724560°° — 32198963252800°" + 2328675366384
— 1043027124704 4 2389349261080 — 243077259840 + 13349649440
— 1695899840°" + 812417200 — 35504960 — 12560a°° — 13760°" + o

Nitya Mani, an undergraduate student at Stanford University, observed that if « is a

root of a palindromic polynomial such as this, then o+ 1/« is a root of a transformed
polynomial of half the degree. This fact can be used to significantly accelerate the
computation of Poisson polynomials in the even case (runs denoted by * in the table). ..



New observations for the case (1/s,1/s)
After doing some Google searches on the coefficients of the polynomials p1; and pss,
we found the coefficient 387221579866 in p11 appears in a 2010 preprint by Savin and
Quarfoot, and the coefficient 221753896032 in p;3 appears in a manuscript, also dated
2010, by Bostan, Boukraa, Hassani, Maillard, Weil, Zenine and Abarenkova.

Savin and Quarfoot define a sequence v, of polynomials in x and y, based on the
curve y? = x3 + x, as follows:

P =1

o =2y

Y3 =3x* +6x2—1

Paq = 2y(2x° + 10x* — 10x? — 2), (1)

and, recursively,

Yant1 = Yni2 - ¢3 —Yn-1- ¢3+1 forn>2
VYon = 1/(2y) - Yn(Yni2 - ¢%_1 — Yp-2- 1!},%“) for n > 3.
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Our analysis
We constructed a related sequence Js of integer coefficient polynomials in a by setting

x =+/—a, and so y? = x(x? + 1) = v/—a(1 — a); we also remove the leading 2y:

Jony1(a) = Y2ny1(x,y)
Jon(a) = 1/(2y) - than(x, y)

The initial values of Js(a) are

Hh=1

bh=1

J=3a"—-6a—1

Jy = 22% —10a* — 10a + 2.
After computation in Magma, we were able to prove that for each prime g = 3 mod 4
the polynomial Jg has degree m(q), where m(s) is Kimberley's formula.
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Additional conjectures

In fact, our computations support these conjectures:

» For each prime g = 3 mod 4, the polynomial J; is precisely p; as computed by
PSLQ.

» For each integer s > 1, ps is the unique degree m(s) prime factor of Js.
» The J function is a divisibility sequence: m | n implies Jp, | J,.

» For each positive integer s, both Js and ps have largest real root ;.
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Proofs

of Kimberley's formula and the palindromic property

In March 2016, DHB presented our results at a seminar at the University of
California, Berkeley.

Following the presentation, Watson Ladd, a graduate student in mathematics,
brought to our attention the fact that some of our conjectures should follow from
results in the theory of elliptic curves, Gaussian integers and ideals.

After some effort, Ladd produced proofs of Kimberley's formula and the
palindromic property, which proofs were then incuded in our paper and returned
to the journal.
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Poisson polynomials: Progress and challenges

>

Our computations employed up to 64,000-digit precision, producing polynomials
with degrees up to 512 and integer coefficients up to 10%2%. These are the largest
successful integer relation computations to date.

Kimberley's formula was affirmed in every case x =y = 1/s, for s up to 52
(except for s = 41, 43, 47, 49, 51), and also for s = 60 and s = 64.

The resulting polynomial coefficients yielded clues that ultimately led to a proof of
Kimberley's formula and the palindromic property, employing techniques of elliptic
curves, Gaussian integers and ideals.

Additional research is needed to understand many other combinations, e.g.,

x = p/s and y = q/s, for different values of p, g and s.

A fundamentally new integer relation algorithm may be required to further extend
the requisite computations.

Full details are at:
http://www.davidhbailey.com/dhbpapers/poisson-res.pdf
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Jon Borwein's research on 7 and experimental mathematics

Jon’s interest in 7 and experimental math was
prompted in part by his desire to do research
that would connect to a large public audience.

7 continues to excite millions worldwide,
leading many to pursue careers in math,
science and engineering.

Experimental mathematics enables a much
broader community to do real math research:

> High school and college students.
» Computer scientists.
» Computer graphics experts.

» Statisticians.

v

Data scientists.

ANSWER TO PREVIOUS PUZZLE

David H. Bailey
Jonathan M. Borwein

ahg.

Pi:The Next
Generation

A Sourcebook
on the Recent History of Pi
and Its Computation
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Von Neumann's warning about the future of mathematics

Experimental mathematics provides a means to escape the trap feared by John von
Neumann when he wrote,

But there is a grave danger that the subject [of mathematics| will develop
along the line of least resistance, that the stream, so far from its source, will
separate into a multitude of insignificant branches, and that the discipline will
become a disorganized mass of details and complexities. In other words, at a
great distance from its empirical source, or after much “abstract” inbreeding,
a mathematical subject is in danger of degeneration. . . .

In any event, whenever this stage is reached, the only remedy seems to me to
be the rejuvenating return to the source: the re-injection of more or less
directly empirical ideas. | am convinced that this was a necessary condition
to conserve the freshness and the vitality of the subject and that this will
remain equally true in the future.
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Winning the battle, but losing the war

Mathematicians and scientists may be winning battles to publish papers and obtain
grants, but we are losing the war for the hearts and minds of the public:

>

>

>

51% in U.S. (54% in Australia) either do not believe in climate change, or do not believe
there is any human connection.

42% in U.S. (23% in Australia) believe that humans were created within past 10,000 years.

38% in U.S. (32% in Australia) do not believe in evolution.

32% in U.S. (24% in Australia) do not believe vaccinations are safe.

48% in U.S. (34% in Australia) believe humans are being visited by extraterrestrial UFOs.

6% in U.S. believe NASA faked the Apollo moon landings.

Some even dispute the value of 7. (I frequently receive such email.)

Anti-science movements arise from both sides of the political spectrum:

>

>

From the left: anti-vaccination and anti-fluoridation.

From the right: anti-climate change and anti-evolution.
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Carl Sagan’s warning ( The Demon Haunted World, 1995)

| have a foreboding of an America in my children’s or my grandchildren’s time — when
the United States is a service and information economy; when nearly all the key
manufacturing industries have slipped away to other countries; when awesome
technological powers are in the hands of a very few, and no one representing the public
interest can even grasp the issues; when the people have lost the ability to set their
own agendas or knowledgeably question those in authority; when, clutching our
crystals and nervously consulting our horoscopes, our critical faculties in decline,
unable to distinguish between what feels good and what’s true, we slide, almost
without noticing, back into superstition and darkness. ...

We've arranged a global civilization in which most crucial elements ... profoundly
depend on science and technology. We have also arranged things so that almost no
one understands science and technology. This is a prescription for disaster. We might
get away with it for a while, but sooner or later this combustible mixture of ignorance
and power is going to blow up in our faces.
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How

can we turn the tide?

Start a blog.

Visit schools or give lectures.

Write books for the general public.

Write articles for science news forums.

Write expository articles for scientific journals.

Pursue research topics that have potentially wide appeal.

Recognize communication skills in hiring, promotion and
research grant decisions.

Find ways to utilize computers and otherwise make teaching
and research much more engaging and interesting.

1 Prefer Pi: Background for Big Pi Day (3/14/15)
/i

Pin the popular culture

o s
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Ending the war between science and the humanities

Given the growing tensions in society, and the impact of rapidly changing b
. TWO CULTURES
technology, we can no longer afford a war between the science-tech world AND
and the humanities:
THE SCIENTIFIC
» Those in math, science and technology must learn more about the REVOLUTION
humanities, to better appreciate these fields, and to better
. . By C. P. Snow
communicate to the public.
» Those in the humanities must learn more about math, science and FHEREDELECTOREs (50

technology, to better appreciate these fields, and to better participate
in dialogue on key issues.

It's in Apple’s DNA that technology alone is not enough — that
it's technology married with liberal arts, married with the

humanities, that yields us the result that makes our hearts sing.
[Steve Jobs]
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They should have sent a poet

In one memorable scene from the movie Contact, Jodi Foster
views a galaxy from her spacecraft, and is so overcome with
awe that she exclaims,

They should have sent a poet. So beautiful.
So beautiful... | had no idea.

In a similar way, those of us involved in research are often stunned by the beauty and
elegance of mathematics and science, along with the rather mysterious fact that we
humans are able to comprehend these laws.

So why don't we do more to share this wonder? Why don’t we write some poetry?

Thanks!
This talk is available here: nttp://www.davidhbailey.com/dhbtalks/dhb-jbcc-2017.pdf
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