High-Performance Computing and Mathematical Physics

David H Bailey
Lawrence Berkeley National Laboratory, USA
This talk is available at:
High-Performance Computing: Progress and Challenges

Progress to date:
- Thousands of demanding scientific computations have been successfully implemented on highly parallel computer systems.
- Performance has advanced at an exponential rate (closely following Moore’s Law) for over 30 years.
- Additional advances have resulted from improved numerical algorithms and programming techniques.
- Many disciplines now use this technology: biology, medicine, aerospace, automotive, physics, astrophysics, semiconductors, financial modeling.

Challenges that lie ahead:
- The era of relentless increase in clock speed is over.
- High-end systems of the future will feature millions of multi-core processors.
- Scientific applications on future high-end systems must exhibit and exploit enormous concurrency (e.g., roughly 10^{10}-way concurrency).
- System software (operating systems, compilers, performance tools, etc.) must also be retargeted to these extremely highly parallel systems.
Top500 Performance Trends
The “Franklin” System at LBNL’s NERSC Computer Center

- 9,660 dual-core Opteron computational nodes (19,320 CPUs).
- 100 Tflop/s (100 trillion floating-point operations / sec) peak performance.
- 38.6 Tbytes (38.6 trillion bytes) main memory.
Future Climate Modeling Requirements

Current state-of-the-art:

- Atmosphere: 1.4 horizontal deg spacing, with 26 vertical layers.
- Ocean: 1 degree spacing, 40 vertical layers.
- Currently one simulated day uses 140 seconds, on 208 CPUs.

Enhancements to physics (carbon cycles, bio-geochemistry, etc.,):

- 25X increase in cost.

Resolution enhancements:

- 0.7 deg atmosphere, 1 deg ocean: 5.75X, which with 25X is 144X.
- 0.35 deg atmosphere; 0.5 deg ocean: 800-1000X current usage.
Future Fusion Simulation Requirements

Tokamak turbulence (GTC) for ITER:
- Grid size: $10,000 \times 4000 \times 256$, or about 10^{10} gridpoints, with 200,000 time steps required.
- Improved plasma model will increase cost by 10-100X.
- Total cost: 6×10^{21} flop = 1 hour on a 1 Eflop/s (i.e., 10^{18} flop/s) computer system; 10 Pbyte main memory.

All-Orders Spectral Algorithm (AORSA) – absorption of RF waves in plasma:
- Present Day: $300,000 \times 300,000$ complex linear system; requires 1.3 hours on a 1 Tflop/s system; 1.2 Tbyte memory.
- Future (ITER scale): $6,000,000 \times 6,000,000$ system will require 1 hour on a 1 Eflop/s system; 1 Pbyte main memory.
Future Astrophysics Computation Requirements

Supernova simulation:
- 3-D model calculations will require 1,000,000 CPU-hours per run, on a 1 Pflop/s system, or 1000 hours per run on a 1 Eflop/s system.

Analysis of cosmic microwave background data:
- WMAP (now): 3×10^{21} flops, 16 Tbyte memory.
- PLANCK (2007): 2×10^{24} flops, 1.6 Pbyte memory.
- CMBpol (2015): 1×10^{27} flops, 1 Ebyte memory.

Note: Microwave background data analysis, and also supernova data analysis, involves mountains of experimental data, not simulation data.
The SciDAC Program of the U.S. Department of Energy

Scientific Discovery through Advanced Computing (SciDAC) – a $75 M/yr program to advance high-performance computing for DOE missions.

Scientific applications:
- Physics: Accelerator design, astrophysics, particle physics, cosmology.
- Climate modeling: Full-scale, long-term modeling of climate.
- Groundwater simulation: Long-term environmental hazards.
- Fusion energy: Plasma physics, reactor design.
- Biology: Ethanol production, protein function.
- Material science and chemistry: Nanoscience, quantum chemistry, electronic structure calculations.

Mathematics and computer science:
- Applied mathematics: Improved algorithms and parallelization schemes.
- Computer science: Performance tools, data storage, networking.
- Visualization: “Seeing” the data on petascale systems.
Participating institutions: Argonne, LBNL, LLNL, Oak Ridge, Rice, UCSD, U Maryland, UNC, USC, U Tennessee.

Lead investigators: Robert Lucas, USC/ISI and David H Bailey, LBNL.

Funding: $4 million per year.

Mission: To improve the performance of DOE-funded science applications on high-end computing platforms.

Component activities:
- Performance modeling.
- Automatic performance tuning.
- Application engagement.
Most scientific computation utilizes floating-point arithmetic (although some, such genome sequence analysis, use only integer computations).

Present-day computer hardware supports three types of floating-point:
- IEEE 32-bit (“single precision”), roughly 6 digits.
- IEEE 64-bit (“double precision”), roughly 16 digits.
- IEEE 80-bit (“extended precision”), roughly 18 digits (Intel and AMD).

For a growing number of computations, much higher precision is needed:
- Quantum field theory.
- Supernova simulation.
- Semiconductor physics.
- Planetary orbit calculations.
- Ising theory of mathematical physics.
- Experimental and computational mathematics.
LBNL’s High-Precision Software: ARPREC and QD

♦ QD: Double-double (32 digits) and quad-double (64 digits).
♦ ARPREC: Arbitrary precision (hundreds or thousands of digits).
♦ Low-level routines written in C++.
♦ High-level C++ and F-90 translation modules permit use with existing programs with only minor code changes.
♦ Integer, real and complex datatypes.
♦ Many common functions: sqrt, cos, exp, gamma, etc.
♦ PSLQ, root finding, numerical integration.
♦ An interactive “Experimental Mathematician’s Toolkit.”
♦ Can easily be incorporated into a highly parallel program.
Available at: http://www.experimentalmath.info

Other widely used high-precision software:
♦ GMP: http://gmplib.org
♦ MPFR: http://www.mpfr.org

High-Precision Arithmetic: Supernova Simulations

♦ Researchers are using QD to solve for equilibrium populations of iron and other atoms in the atmospheres of supernovas.
♦ Iron may exist in several species, so it is necessary to solve for all species simultaneously.
♦ Since the relative population of a species is proportional to the exponential of the ionization energy, the dynamic range of these values can be very large.
♦ The quad-double (64-digit) portion now dominates the entire computation.

High-Precision Arithmetic: Planetary Orbit Calculations

♦ A key question of planetary theory is whether the solar system is stable over cosmological time frames (billions of years).
♦ Scientists have studied this question by performing very long-term simulations of chaotic planetary motions.
♦ Simulations typically do well for long periods of time, but then fail at certain key junctures, unless special measures are taken.
♦ Researchers have found that double-double or quad-double arithmetic is required to avoid severe numerical inaccuracies, even if other techniques are employed.

“The orbit of any one planet depends on the combined motions of all the planets, not to mention the actions of all these on each other. To consider simultaneously all these causes of motion and to define these motions by exact laws allowing of convenient calculation exceeds, unless I am mistaken, the forces of the entire human intellect.” [Isaac Newton, 1687]

A long-standing conjecture from fluid dynamics is that vortices assume exponential spiral shapes.

Careful simulations of these vortices require high-precision arithmetic to obtain numerically meaningful results.

In a study co-authored with Pelz, a vortex simulation was performed using 64-digit arithmetic.

These results seem to indicate that in a certain parameter range, vortices do not assume exponential spiral shapes.

More study is needed to understand this phenomenon.

Analysis of Vibration Modes in Crystal Resonators

- In these computations, the magnitudes of coefficients of a series expansion can reach 10^{30} for the parameters used.
- To achieve an accuracy of at least 16 digits in the result thus requires a minimum of 46-digit precision, and in practice several additional digits are required.
- In a 1999 study, researchers were able to overcome these difficulties by using the MPFUN package, a predecessor of ARPREC. The QD package would have been adequate (and faster) for this study, but when this research was done, the QD package was not yet available.
- In other applications of this general type (finite element structural computations), separation of eigenvalues is a significant issue. This can be rectified, in many cases, using high-precision arithmetic.

Let \((x_n)\) be a given vector of real numbers. An integer relation algorithm finds integers \((a_n)\) such that
\[a_1 x_1 + a_2 x_2 + \cdots + a_n x_n = 0 \]
(or within “epsilon” of zero, where epsilon = \(10^{-p}\) and \(p\) is the precision).

At the present time the “PSLQ” algorithm of mathematician-sculptor Helaman Ferguson is the most widely used integer relation algorithm. It was named one of ten “algorithms of the century” by *Computing in Science and Engineering*.

PSLQ (or any other integer relation scheme) requires very high precision (at least \(n^*d\) digits, where \(d\) is the size in digits of the largest \(a_k\)), both in the input data and in the operation of the algorithm.

Decrease of $\log_{10}(\min |x_i|)$ in PSLQ
Application of PSLQ: Bifurcation Points in Chaos Theory

Let t be the smallest r such that the “logistic iteration”

$$x_{n+1} = r x_n (1 - x_n)$$

exhibits 8-way periodicity instead of 4-way periodicity.

By means of an iterative scheme, one can obtain the numerical value of t to any desired precision:

$$3.54409035955192285361596598660480454058309984544457367545781…$$

Applying PSLQ to the vector $(1, t, t^2, t^3, \ldots, t^{12})$, one finds that t satisfies:

$$0 = 4913 + 2108t^2 - 604t^3 - 977t^4 + 8t^5 + 44t^6 + 392t^7 - 193t^8 - 40t^9 + 48t^{10} - 12t^{11} + t^{12}$$

Application of PSLQ: Identifying Ten Constants from Quantum Field Theory

\[V_1 = 6\zeta(3) + 3\zeta(4) \]
\[V_{2A} = 6\zeta(3) - 5\zeta(4) \]
\[V_{2N} = 6\zeta(3) - \frac{13}{2}\zeta(4) - 8U \]
\[V_{3T} = 6\zeta(3) - 9\zeta(4) \]
\[V_{3S} = 6\zeta(3) - \frac{11}{2}\zeta(4) - 4C^2 \]
\[V_{3L} = 6\zeta(3) - \frac{15}{4}\zeta(4) - 6C^2 \]
\[V_{4A} = 6\zeta(3) - \frac{77}{12}\zeta(4) - 6C^2 \]
\[V_{4N} = 6\zeta(3) - 14\zeta(4) - 16U \]
\[V_5 = 6\zeta(3) - \frac{469}{27}\zeta(4) + \frac{8}{3}C^2 - 16V \]
\[V_6 = 6\zeta(3) - 13\zeta(4) - 8U - 4C^2 \]

where

\[C = \sum_{k>0} \sin(\pi k/3)/k^2 \]
\[U = \sum_{j>k>0} \frac{(-1)^{j+k}}{j^3k} \]
\[V = \sum_{j>k>0} (-1)^j \cos(2\pi k/3)/(j^3k) \]
Some Supercomputer-Class PSLQ Solutions

- Identification of B_4, the fourth bifurcation point of the logistic iteration:
 Integer relation of size 121. 10,000-digit arithmetic.
- Identification of Apery sums.
 15 integer relation problems, with size up to 118. 5,000-digit arithmetic.
- Identification of Euler-zeta sums.
 Hundreds of integer relation problems, each of size 145. 5,000-digit arithmetic.
- Finding recursions in Ising integrals.
 Over 2600 high-precision numerical integrations, and integer relation detections.
 1500-digit arithmetic. Run on Apple system at Virginia Tech – 12 hours on 64 CPUs.
- Finding a relation involving a root of Lehmer’s polynomial.
 Integer relation of size 125. 50,000-digit arithmetic. Utilizes 3-level, multi-pair parallel PSLQ program. Run on IBM parallel system – 16 hours on 64 CPUs.

Fascination With Pi

Newton (1670):
“I am ashamed to tell you to how many figures I carried these computations, having no other business at the time.”

Carl Sagan (1986):
In his book “Contact,” the lead scientist (played by Jodie Foster in the movie) looked for patterns in the digits of pi.

On March 14 (03/14) the daily crossword puzzle featured a pi theme: key answers included “pi” in the place of a single character.
Fax from “The Simpsons” Show

TO: DAVID BAILEY
FROM: JACQUELINE ATKINS
DATE: 10/9/92
NUMBER OF PAGES: 1

FAX (310) 203-3852
PHONE (310) 203-3959

A Professor at UCLA told me that you might be able to give me the answer to: What is the 10,000th digit of pi?

We would like to use the answer in our show. Can you help?
The Borwein-Plouffe Observation

In 1996, Peter Borwein and Simon Plouffe observed that the following well-known formula for $\log_e 2$

$$\log 2 = \sum_{n=1}^{\infty} \frac{1}{n2^n} = 0.69314718055994530942 \ldots$$

leads to a simple scheme for computing binary digits at an arbitrary starting position (here $\{}$ denotes fractional part):

$$\left\{2^d \log 2\right\} = \left\{ \sum_{n=1}^{d} \frac{2^{d-n}}{n} \right\} + \sum_{n=d+1}^{\infty} \frac{2^{d-n}}{n}$$

$$= \left\{ \sum_{n=1}^{d} \frac{2^{d-n}}{n} \mod n \right\} + \sum_{n=d+1}^{\infty} \frac{2^{d-n}}{n}$$
The exponentiation \((2^{d-n} \mod n)\) in this formula can be evaluated very rapidly by means of the binary algorithm for exponentiation, performed modulo \(n\):

Example problem: Calculate the last digit of \(3^{17}\) (i.e., compute \(3^{17} \mod 10\)).

Algorithm A: \(3 \times 3 = 129140163\). Ans = 3.

Algorithm B: \(3^{17} = (((3^2)^2)^2) \times 3 = 129140163\). Ans = 3.

Algorithm C: Same as Algorithm B, but reduce mod 10 after each multiply operation:
- \(3^2 \mod 10 = 9\);
- \(9^2 \mod 10 = 1\);
- \(1^2 \mod 10 = 1\);
- \(1^2 \mod 10 = 1\);
- \(1 \times 3 = 3\).

Ans = 3.

Note that with Algorithm C, we never have to deal with integers greater than 81. This is a huge savings when we deal with very large powers.
The BBP Formula for Pi

In 1996, Simon Plouffe used DHB’s PSLQ program and high-precision arithmetic software to discover this new formula for pi:

\[
\pi = \sum_{k=0}^{\infty} \frac{1}{16^k} \left(\frac{4}{8k + 1} - \frac{2}{8k + 4} - \frac{1}{8k + 5} - \frac{1}{8k + 6} \right)
\]

This formula was found by searching for integer relations between pi and about 25 other constants with known series formulas like \(\log(2)\).

This formula permits one to compute binary (or hexadecimal) digits of pi beginning at an arbitrary starting position.

Recently it was proven that no base-\(n\) formulas of this type exist for pi, except when \(n = 2^m\).

Some Other BBP-Type Formulas

\[
\begin{align*}
\pi^2 &= \frac{1}{8} \sum_{k=0}^{\infty} \frac{1}{64^k} \left(\frac{144}{(6k + 1)^2} - \frac{216}{(6k + 2)^2} - \frac{72}{(6k + 3)^2} - \frac{54}{(6k + 4)^2} + \frac{9}{(6k + 5)^2} \right) \\
\pi^2 &= \frac{2}{27} \sum_{k=0}^{\infty} \frac{1}{729^k} \left(\frac{243}{(12k + 1)^2} - \frac{405}{(12k + 2)^2} - \frac{81}{(12k + 4)^2} - \frac{27}{(12k + 5)^2} + \frac{72}{(12k + 6)^2} - \frac{9}{(12k + 7)^2} - \frac{9}{(12k + 8)^2} - \frac{5}{(12k + 10)^2} + \frac{1}{(12k + 11)^2} \right) \\
\zeta(3) &= \frac{1}{1792} \sum_{k=0}^{\infty} \frac{1}{2^{12k}} \left(\frac{6144}{(24k + 1)^3} - \frac{43008}{(24k + 2)^3} + \frac{24576}{(24k + 3)^3} + \frac{30720}{(24k + 4)^3} - \frac{1536}{(24k + 5)^3} + \frac{3072}{(24k + 6)^3} + \frac{768}{(24k + 7)^3} - \frac{3072}{(24k + 9)^3} - \frac{2688}{(24k + 10)^3} + \frac{192}{(24k + 11)^3} - \frac{48}{(24k + 12)^3} + \frac{12}{(24k + 13)^3} + \frac{672}{(24k + 14)^3} - \frac{48}{(24k + 15)^3} + \frac{48}{(24k + 17)^3} + \frac{120}{(24k + 18)^3} - \frac{48}{(24k + 19)^3} + \frac{3}{(24k + 20)^3} + \frac{3}{(24k + 21)^3} - \frac{3}{(24k + 22)^3} + \frac{3}{(24k + 23)^3} \right) \\
\frac{25}{2} \log \left(\frac{781}{256} \left(\frac{57 - 5\sqrt{5}}{57 + 5\sqrt{5}} \right)^{\sqrt{5}} \right) &= \sum_{k=0}^{\infty} \frac{1}{5^{5k}} \left(\frac{5}{5k + 2} + \frac{1}{5k + 3} \right)
\end{align*}
\]

A real number x is said to be b-normal (or normal base b) if every m-long string of base-b digits appears, in the limit, with frequency b^{-m}.

Whereas it can be shown that almost all real numbers are b-normal (for any b), there are only a handful of proven explicit examples.

It is still not known whether any of the following are b-normal for any b:

\[
\begin{align*}
\sqrt{2} & = 1.4142135623730950488 \ldots \\
\phi & = \frac{\sqrt{5} - 1}{2} = 0.61803398874989484820 \ldots \\
\pi & = 3.1415926535897932385 \ldots \\
e & = 2.7182818284590452354 \ldots \\
\log 2 & = 0.69314718055994530942 \ldots \\
\log 10 & = 2.3025850929940456840 \ldots \\
\zeta(2) & = 1.6449340668482264365 \ldots \\
\zeta(3) & = 1.2020569031595942854 \ldots
\end{align*}
\]
Let \{\} denote fractional part. Consider the sequence defined by \(x_0 = 0\),

\[
x_n = \left\{ 2x_{n-1} + \frac{1}{n} \right\}
\]

Result: \(\log(2)\) is 2-normal if and only if this sequence is equidistributed in the unit interval.

In a similar vein, consider the sequence \(x_0 = 0\), and

\[
x_n = \left\{ 16x_{n-1} + \frac{120n^2 - 89n + 16}{512n^4 - 1024n^3 + 712n^2 - 206n + 21} \right\}
\]

Result: \(\pi\) is 16-normal if and only if this sequence is equidistributed in the unit interval.

A similar result holds for any constant that possesses a BBP-type formula.

We have also shown that this constant (among many others) is 2-normal:

$$\alpha_{2,3} = \sum_{k=1}^{\infty} \frac{1}{3^k 2^k} = \frac{1}{3 \cdot 2^3} + \frac{1}{3^2 \cdot 2^3} + \frac{1}{3^3 \cdot 2^3} + \frac{1}{3^4 \cdot 2^4} \cdots$$

$$= 0.041883680831502985071252898624571682426096\ldots_{10}$$

$$= 0.0AB8E38F684BDA12F684BF35BA781948B0FCD6E9E0\ldots_{16}$$

This means, for instance, that the entire works of William Shakespeare are contained, in coded form, in the base-16 digits of this number.

These results have led to a practical and efficient pseudo-random number generator based on the binary digits of alpha.

The Tanh-Sinh Algorithm for Numerical Integration

Given \(f(x) \) defined on \((-1,1)\), define \(g(t) = \tanh(\pi/2 \sinh t) \). Then setting \(x = g(t) \) yields

\[
\int_{-1}^{1} f(x) \, dx = \int_{-\infty}^{\infty} f(g(t)) g'(t) \, dt \approx h \sum_{-N}^{N} w_j f(x_j)
\]

where \(x_j = g(hj) \) and \(w_j = g'(hj) \). Since \(g'(t) \) goes to zero very rapidly for large \(t \), the product \(f(g(t)) g'(t) \) typically is a nice bell-shaped function. For such functions, the Euler-Maclaurin formula of numerical analysis implies that the simple summation above is remarkably accurate. Reducing \(h \) by half typically doubles the number of correct digits.

Tanh-sinh quadrature is the best integration scheme for functions with vertical derivatives or blow-up singularities at endpoints, or for any function at very high precision (> 1000 digits).

Example Application of Tanh-Sinh Integration

The following integral cannot be evaluated symbolically by either Maple (version 11) or Mathematica (version 6.0):

\[
\int_0^{\pi/2} \frac{\arcsin(\sqrt{2}/2 \cdot \sin x) \sin x \, dx}{\sqrt{4 - 2 \sin^2 x}} =
\]

0.384946472767794677379733634534350939378637…

However, by employing tanh-sinh quadrature (which produces the numerical value shown above) followed by the Inverse Symbolic Calculator (ISC 2.0), available at http://ddrive.cs.dal.ca/~isc, one obtains

\[
\int_0^{\pi/2} \frac{\arcsin(\sqrt{2}/2 \cdot \sin x) \sin x \, dx}{\sqrt{4 - 2 \sin^2 x}} = \frac{\sqrt{2\pi \log 2}}{8}
\]

This has been numerically verified to over 1000-digit precision.
A Log-Tan Integral Identity from Mathematical Physics

\[\frac{24}{7\sqrt{7}} \int_{\pi/3}^{\pi/2} \log \left| \frac{\tan t + \sqrt{7}}{\tan t - \sqrt{7}} \right| \, dt \quad ? \quad \sum_{n=0}^{\infty} \left[\frac{1}{(7n + 1)^2} + \frac{1}{(7n + 2)^2} - \frac{1}{(7n + 3)^2} \
ight. \\
\left. + \frac{1}{(7n + 4)^2} - \frac{1}{(7n + 5)^2} - \frac{1}{(7n + 6)^2} \right] \]

This conjectured identity arises in mathematical physics from analysis of volumes of ideal tetrahedra in hyperbolic space.

We have verified this numerically to 20,000 digits using highly parallel tanh-sinh quadrature, but no formal proof is known.

Parallel Evaluation of the log-tan Integral

\[
\frac{24}{7\sqrt{7}} \int_{\pi/3}^{\pi/2} \log \left| \frac{\tan t + \sqrt{7}}{\tan t - \sqrt{7}} \right| \, dt = 1.1519254705444910471\ldots
\]

<table>
<thead>
<tr>
<th>CPUs</th>
<th>Init</th>
<th>Integral #1</th>
<th>Integral #2</th>
<th>Total</th>
<th>Speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>190013</td>
<td>1534652</td>
<td>1026692</td>
<td>2751357</td>
<td>1.00</td>
</tr>
<tr>
<td>16</td>
<td>12266</td>
<td>101647</td>
<td>64720</td>
<td>178633</td>
<td>15.40</td>
</tr>
<tr>
<td>64</td>
<td>3022</td>
<td>24771</td>
<td>16586</td>
<td>44379</td>
<td>62.00</td>
</tr>
<tr>
<td>256</td>
<td>770</td>
<td>6333</td>
<td>4194</td>
<td>11297</td>
<td>243.55</td>
</tr>
<tr>
<td>1024</td>
<td>199</td>
<td>1536</td>
<td>1034</td>
<td>2769</td>
<td>993.63</td>
</tr>
</tbody>
</table>

1-CPU timings are sums of timings from a 64-CPU run, where barrier waits and communication were not timed.

The performance rate for the 1024-CPU run is 690 Gflop/s.

We recently applied our methods to study three classes of integrals that arise in the Ising theory of mathematical physics:

\[
C_n := \frac{4}{n!} \int_0^\infty \cdots \int_0^\infty \frac{1}{(\sum_{j=1}^{n} (u_j + 1/u_j))^2} \frac{du_1}{u_1} \cdots \frac{du_n}{u_n}
\]

\[
D_n := \frac{4}{n!} \int_0^\infty \cdots \int_0^\infty \prod_{i<j} \left(\frac{u_i-u_j}{u_i+u_j} \right)^2 \frac{du_1}{u_1} \cdots \frac{du_n}{u_n}
\]

\[
E_n = 2 \int_0^1 \cdots \int_0^1 \left(\prod_{1 \leq j < k \leq n} \frac{u_k - u_j}{u_k + u_j} \right)^2 dt_2 dt_3 \cdots dt_n,
\]

where (in the last line) \(u_k = \prod_{i=1}^{k} t_i \).

Computing and Evaluating C_n

We first showed that the multi-dimensional C_n integrals can be transformed to much more manageable 1-D integrals:

$$C_n = \frac{2^n}{n!} \int_0^\infty tK_0^n(t) \, dt$$

where K_0 is the modified Bessel function.

We used this formula to compute 1000-digit numerical values of various C_n, from which the following results and others were found, then proven:

$$C_1 = 2$$

$$C_2 = 1$$

$$C_3 = L_{-3}(2) = \sum_{n \geq 0} \left(\frac{1}{(3n + 1)^2} - \frac{1}{(3n + 2)^2} \right)$$

$$C_4 = 14\zeta(3)$$
The C_n numerical values approach a limit:

\[
\begin{align*}
C_{10} &= 0.63188002414701222229035087366080283... \\
C_{40} &= 0.63047350337836353186994190185909694... \\
C_{100} &= 0.63047350337438679612204019271903171... \\
C_{200} &= 0.63047350337438679612204019271087890...
\end{align*}
\]

What is this number? We copied the first 50 digits of this numerical value into the online Inverse Symbolic Calculator (ISC), now available at

http://ddrive.cs.dal.ca/~isc

The result was:

\[
\lim_{n \to \infty} C_n = 2e^{-2\gamma}
\]

where gamma denotes Euler’s constant. This result is now proven and has been generalized to an asymptotic expansion.
Other Ising Integral Evaluations

\[D_2 = \frac{1}{3} \]
\[D_3 = 8 + \frac{4\pi^2}{3} - 27 \log_3(2) \]
\[D_4 = \frac{4\pi^2}{9} - \frac{1}{6} - \frac{7\zeta(3)}{2} \]
\[E_2 = 6 - 8 \log 2 \]
\[E_3 = 10 - 2\pi^2 - 8 \log 2 + 32 \log^2 2 \]
\[E_4 = 22 - 82\zeta(3) - 24 \log 2 + 176 \log^2 2 - \frac{256(\log^3 2)}{3} + 16\pi^2 \log 2 - 22\pi^2 / 3 \]
\[E_5 \overset{?}{=} 42 - 1984 \text{Li}_4(1/2) + \frac{189\pi^4}{10} - 74\zeta(3) - 1272\zeta(3) \log 2 + 40\pi^2 \log^2 2 - 62\pi^2 / 3 + 40(\pi^2 \log 2) / 3 + 88 \log^4 2 + 464 \log^2 2 - 40 \log 2 \]

where \(\text{Li} \) denotes the polylogarithm function.
We were able to reduce E_5, which is a 5-D integral, to an extremely complicated 3-D integral (see below).

We computed this 3-D integral to 250-digit precision, using a parallel high-precision 3-D quadrature program. Then we used PSLQ to discover the evaluation given on the previous page.
Consider the 2-parameter class of Ising integrals

\[C_{n,k} = \frac{4}{n!} \int_0^\infty \cdots \int_0^\infty \frac{1}{(\sum_{j=1}^n (u_j + 1/u_j))^{k+1}} \frac{du_1}{u_1} \cdots \frac{du_n}{u_n} \]

(which have connections to quantum field theory). After computing 1000-digit numerical values for all \(n \leq 36 \) and all \(k \leq 75 \) (2660 individual quadrature calculations, performed in parallel), and applying PSLQ, we found linear relations in the rows of this array. For example, when \(n = 3 \):

\[
\begin{align*}
0 &= C_{3,0} - 84C_{3,2} + 216C_{3,4} \\
0 &= 2C_{3,1} - 69C_{3,3} + 135C_{3,5} \\
0 &= C_{3,2} - 24C_{3,4} + 40C_{3,6} \\
0 &= 32C_{3,3} - 630C_{3,5} + 945C_{3,7} \\
0 &= 125C_{3,4} - 2172C_{3,6} + 3024C_{3,8}
\end{align*}
\]

These recursions have been proven for \(n = 1, 2, 3, 4 \). Similar, but more complicated, recursions have been found for larger \(n \) (see next page).

Experimental Recursion for $n = 24$

$$0 \equiv C_{24,1}$$

$$-1107296298 \ C_{24,3}$$

$$+1288574336175660 \ C_{24,5}$$

$$-88962910652291256000 \ C_{24,7}$$

$$+1211528914846561331193600 \ C_{24,9}$$

$$-5367185923241422152980553600 \ C_{24,11}$$

$$+9857686103738772925980190636800 \ C_{24,13}$$

$$-8476778037073141951236532459008000 \ C_{24,15}$$

$$+3590120926882411593645052529049600000 \ C_{24,17}$$

$$-745759114781380983188217871663104000000 \ C_{24,19}$$

$$+712155521218699854775783811702587392000000 \ C_{24,21}$$

$$-26498534572479954061133550871746969600000000 \ C_{24,23}$$

$$+249125192342205750942083131952332800000000000 \ C_{24,25}$$

Jonathan Borwein and Bruno Salvy have now given an explicit form for these recursions, together with code to compute any desired case.

Some Results from a New Study of Bessel Moments (Mar. 2008)

\[c_{3,0} = \frac{3\Gamma^6(1/3)}{32\pi 2^{2/3}} = \frac{\sqrt{3}\pi^3}{8} _3F_2 \left(\begin{array}{c} 1/2, 1/2, 1/2 \\ 1, 1 \end{array} \middle| 1/4 \right) \]

\[c_{3,2} = \frac{\sqrt{3}\pi^3}{288} _3F_2 \left(\begin{array}{c} 1/2, 1/2, 1/2 \\ 2, 2 \end{array} \middle| 1/4 \right) \]

\[c_{4,0} = \frac{\pi^4}{4} \sum_{n=0}^{\infty} \frac{(2n)^4}{4^n n} = \frac{\pi^4}{4} _4F_3 \left(\begin{array}{c} 1/2, 1/2, 1/2, 1/2 \\ 1, 1, 1 \end{array} \middle| 1 \right) \]

\[c_{4,2} = \frac{\pi^4}{64} \left[_4F_3 \left(\begin{array}{c} 1/2, 1/2, 1/2, 1/2 \\ 1, 1, 1 \end{array} \middle| 1 \right) - 3 _4F_3 \left(\begin{array}{c} 1/2, 1/2, 1/2, 1/2 \\ 2, 1, 1 \end{array} \middle| 1 \right) \right] - \frac{3\pi^2}{16} \]

where \(F \) denotes Gauss’ hypergeometric function, and \(c_{n,k} = n! \; k! \; 2^{-n} \; C_{n,k}. \)

These and numerous other results are available in a new paper on Bessel moments, which have application not only in Ising theory, but also in quantum field theory, condensed matter theory and “diamond lattice” walks.

Some Other New Indentities Found in Bessel Moment Study

\[C_{5,0} - 10C_{3,2} + 5C_{1,4} = 0 \]

\[\sum_{m=0}^{[n/2]} (-1)^m \binom{n}{2m} \int_0^\infty t^{n-2k} [\pi I_0(t)]^{n-2m} [K_0(t)]^{n+2m} \, dt = 0 \]

\[\frac{\pi}{4} \sum_{n=0}^{\infty} \left(\frac{(2n)!}{2^{2n} n!}\right)^3 \sum_{m=0}^{n} 2^{2m} \frac{\binom{2n+1, 2n+1}{\frac{1}{2}}}{(n-m)! (2n+1+m)!} = \frac{\pi^2}{4\sqrt{3}} \binom{\frac{1}{2}, \frac{1}{2}, \frac{1}{2}}{1, 1, 1} \frac{1}{4} \]

The first identity has been numerically verified to 14,285-digit precision.

The second identity holds for every pair of integers (n,k) with 2*k in [2, n].

The Bessel moment paper gives analytic evaluations of all definite integrals involving products up to six Bessel functions. A computational-experimental methodology was employed throughout the process:

An Example of Computations Involved in the Bessel Moment Study

\[c_{5,0} = \frac{\pi}{2} \int_{-\pi/2}^{\pi/2} \int_{-\pi/2}^{\pi/2} \frac{K(\sin \theta) K(\sin \phi)}{\sqrt{\cos^2 \theta \cos^2 \phi + 4 \sin^2(\theta + \phi)}} d\theta \, d\phi \]

\[= 135.26830258086883759422627964619220742030588935942352678469\ldots \]
Cautionary Example

These constants agree to 42 decimal digit accuracy, but are NOT equal:

\[
\int_0^\infty \cos(2x) \prod_{n=0}^\infty \cos(x/n) \, dx = 0.39269908169872415480783042290993786052464543418723\ldots
\]

\[
\frac{\pi}{8} = 0.39269908169872415480783042290993786052464617492189\ldots
\]

Richard Crandall has now shown that this integral is merely the first term of a very rapidly convergent series that converges to \(\pi/8 \):

\[
\frac{\pi}{8} = \sum_{m=0}^\infty \int_0^\infty \cos(2(2m+1)x) \prod_{n=0}^\infty \cos(x/n) \, dx
\]

Summary

- High-performance computing technology has now been established as the third more of scientific discovery, after theory and experimentation.
- Continued rapid progress is very likely, due both to Moore’s Law and also to an influx of young researchers highly skilled in computing.
- Standard 64-bit (16-digit) computer hardware arithmetic is satisfactory for most of these computations, but some require more -- 32, 64 or even hundreds or thousands of digits.
- Software-based facilities now permit even very complicated computations to be performed with high levels of precision, requiring only minor modification to existing computer programs.
- A combination of high-precision computing, highly parallel computing and methods of experimental mathematics are now being used to discover numerous new significant results of mathematics and physics.

This talk is available at: