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ABSTRACT
Ensemble methods for supervised machine learning have be-
come popular due to their ability to accurately predict class
labels with groups of simple, lightweight “base learners.”
While ensembles offer computationally efficient models that
have good predictive capability, they tend to be large and
offer little insight into the patterns or structure in a dataset.
In this study, we extend an ensemble technique that accu-
rately predicts class labels and has the advantage of indicat-
ing which parameter constraints are most useful for predict-
ing those labels. We develop a method for using this rank-
ing to select features and remove less predictive attributes.
We illustrate our method on a dataset containing images of
potential supernovas, where we select 21 out of 39 features
without reducing classification accuracy. We also extend the
rule ensemble method to multi-class classification and com-
pare it with the boosting and bagging ensemble methods on
various classical multi-class datasets.

1. INTRODUCTION
Machine learning algorithms are popular tools for growing
powerful models that can successfully predict class affilia-
tions of unlabeled observations. These algorithms can at-
tain high classification accuracy for datasets with complex
behavior and from a wide variety of applications. A dis-
advantage of machine learning is that models can become
overly complicated and, as a result, hard to interpret and
expensive to evaluate for large datasets. Ideally we would
like to generate models that are quick to build, cheap to
evaluate, and that give users some insight into the data.

Ensemble methods build larger models by combining many
elementary models, that are quick to build and referred to
as base learners. The larger model captures more behav-
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ior than each base learner captures by itself and so collec-
tively the base learners can model the population and accu-
rately predict class labels [17]. Classical ensemble methods
that use decision trees as base learners, such as bagging and
boosting, have good predictive capability, but cannot offer
much insight into the structure of a dataset [3, 12, 25].

In this paper, we extend an ensemble method that uses rules
as base learners and was proposed by Friedman and Popescu
[19] for binary classification and regression. This method is
attractive, as it gives insight into the structure of a dataset,
while most other ensemble methods cannot provide any in-
sight. The Friedman and Popescu rule ensemble method
uses the inner nodes from a set of decision trees as rules and
combines the rules into a linear model, using weights from
an L1 penalized regression. The regression ranks rules in or-
der of importance, and the L1 penalty prunes rules of little
utility, which gives insight into which attributes are more
important.

First, we modify the Friedman-Popescu rule ensemble method
by using several sophisticated techniques from image pro-
cessing, statistics and mathematical optimization to calcu-
late rule weights, rather than the constrained steepest de-
scent method [18] that was originally employed [19]. The
rule ranking we use successfully prunes more rules, which
yields a smaller model. Because the techniques we employ
have been developed in different fields, each frames the min-
imization problem slightly differently. To our knowledge,
these variations of the rule ensemble scheme have not been
investigated and evaluated in this context before.

Second, we define a voting scheme to remove less influential
attributes. While Friedman and Popescu explored how the
ranking could be used to study the importance of rules, we
use the ranking to eliminate features from the dataset. We
present an example of how we identify important attributes
in a large scientific dataset by applying our techniques to a
set of images of potential supernovas.

We finish by extending the rule ensemble method from its
original binary capability to work with datasets that have
multiple classes. We test this new multi-class method on
classical machine learning datasets from the UC Irvine ma-
chine learning repository [14] and consider how the different
weighting schemes perform in this general setting.



2. OVERVIEW OF THE RULE ENSEMBLE
METHOD

Consider a dataset of points {xi, yi}Ni=1, where xi denotes
the ith observation, with label yi. Each of the observations,
x ∈ RK, has K attributes or feature values that we measure
for each observation. The matrix X will denote the set of
all xi’s. The jth feature of the ith observation is the scalar
xij . Our goal then is to be able to predict what class y a fu-
ture unlabeled observation x belongs to. The rule ensemble
method focuses specifically on the binary decision problem
where y can be one of only two classes {−1,+1}. To clas-
sify observations we seek to construct a function F (x) that
maps an observation x to an output variable ŷ = F (x) that
predicts the true label y.

Define the risk of using any function that maps observations
to labels as

R(F ) = Ex,yL(y, F (x)), (1)

where Ex,y is the expectation operator. L(y, ŷ) is a chosen
loss function that defines the cost of predicting a label ŷ for
an observation when the true label is y.

In the original method, only ramp loss was used, as it is
particularly well suited to control for outliers in the binary
classification problem [17, 19]. In this paper, we will also
consider the use of the squared error loss function, as it has
properties that are necessary to the alternative algorithms
that we employ to weight rules. Within this framework we
seek to find a function, that minimizes the risk. We ap-
proximate this optimal function with a function F̂ (x) that
minimizes the expected loss on the set of observed training
data S = {xi, yi}Ni=1. We assume that F̂ (x) has the form of
a linear combination of K base learners {fk(x)}Kk=1:

F̂ (x; a) = a0 +

K∑
k=1

akfk(x). (2)

The function F̂ (x; a) returns a real value. To get a pre-
diction for the binary valued label, we take the sign of the
approximation ŷ = sign(F̂ (x; a)). Ideally, we want the coef-
ficients a = (a1, a2, . . . , aK) that minimize the risk (1). As
an approximation, we use the coefficients a∗ that minimize
the risk over the given sample set of observations S

a∗ = argmin
{a}

ESL(y, F (x; a)), (3)

= argmin
{a}

1

N

N∑
i=1

L

(
yi, a0 +

K∑
k=1

akfk(xi)

)
. (4)

The solution to equation (4) is prone to overfit the training
data, so we include a penalty term. The penalty forces a
sparse solution that eliminates less influential terms from
the model, is more robust to training data, and allows for a
more interpretable model. Here, we use the L1 (lasso [30])
penalty and the solution â to the penalized problem

â = arg min
{a}

N∑
i=1

L

(
yi, a0 +

K∑
k=1

akfk(xi)

)
+ λ

K∑
k=1

|ak|. (5)

The impact of the penalty is controlled by the parameter
λ ≥ 0. This penalized problem has received a great deal

of attention [13, 15, 20] and enables both estimation of the
coefficients as well as coefficient selection.

2.1 Base Learners - Rules
The base learners fk in equation (2) can take on a variety
of forms to create different ensemble methods. In ensem-
ble methods such as bagging, random forests, and boosting,
decision trees are used as base learners [7]. For the rule
ensemble method, simple rules rk of the form

rk(xi; pk) =
∏
j

I(xij ∈ pkj), (6)

where I(xij ∈ pkj) is an indicator function, are used as
base learners or terms in the linear model. Each pkj is a
constraint that the kth rule assigns to the jth attribute. For
convenience we will denote pk = (pk1, . . . ) to be the vector
of parameter constraints that an observation must meet to
have the kth rule to evaluate to 1.

The rules are generated by computing parameter sets {pk}Kk=1

by growing decision trees. Each internal node of the deci-
sion trees (not the root nodes) takes the form of a simple
rule defined in equation (6). The decision trees are grown
with gradient boosting and on randomly selected subsets of
data, to avoid regrowing overlapping rules and to ensure a
wide variety of rules. Further details on how to generate a
diverse set of rules can be found either in Friedman’s and
Popescu’s paper [19] or our technical report [10].

2.2 Weighting Rules
To approximate the coefficients â defined in equation (5),
we test a variety of algorithms that come from a wide range
of fields. Here we give a brief overview of each method and
describe how it encourages a sparse solution.

2.2.1 Pathbuild
The method that Friedman and Popescu suggested to use
to approximate coefficients is a constrained gradient descent
method that we will refer to as Pathbuild [18]. The method
does not solve (5) explicitly, but rather initializes all coeffi-
cients to zero and only progresses in the direction of rules
that have a large effect on the predictive capability of the
model. At each iteration ` the subset of coefficients that get
increased at iteration `+ 1 is defined by

{k : |gk(X; a`)| ≥ τ ∗ ||gk(X; a`)||∞}.

Here gk(X; a`) is the kth component of the gradient of the
risk (equation (1)) evaluated with F (x) on the entire dataset
X at the `th iteration of the descent. The coefficients in this
set have components of the gradient that have a magnitude
greater than some fraction τ ∈ [0, 1] of the absolute value
of the largest gradient component. The set of directions
the method advances in can change at every iteration. By
not advancing in directions that have little change in the
risk function, coefficients for rules that have little effect are
prevented from “stepping” off zero and thus kept out of the
model. Lower values of τ include more rules in the model.
The largest model results when τ = 0, which causes a basic
gradient descent method and unpenalized regression.



2.2.2 Glmnet
The Glmnet package approximates a solution to the least
squared error regression subject to an elastic net penalty,

min
{a}

1

N
||F (X; a)− y||2 + λPα(a), (7)

with a coordinate-wise gradient descent method [15]. The
elastic net is defined as

Pα(x) = α||a||1 + (1− α)||a||22
for α ∈ [0, 1]. We set α = 1 and get the same problem as in
equation (5), but with the L2 norm as the loss function in-
stead of ramp loss. Using α = 1, we solve for the rule weights
a. The coordinate-wise gradient descent method starts with
the null solution, which corresponds to solving equation (7)
with λ = ∞ and is similar to Pathbuild. Then Glmnet
cycles over the coefficients and uses partial residuals and a
soft-thresholding operator to update each coefficient one by
one [16]. Glmnet has modifications that allow parameters
to be updated at the same time as neighboring parameters.
As the coefficients are updated, λ is decreased exponentially
and a set of coefficients is calculated at each increment of
the path λ =∞ to λ = λmin. Each increment the previous
solution as a “warm start” to approximate the next solution.

2.2.3 Spgl1
The Spgl1 (sparse projected-gradient l1) package [31] solves
for the coefficients a in

min
{a}
||F (X; a)− y||2 subject to ||a||1 <= σ, (8)

which is an equivalent formulation to the problem in equa-
tion (5) using the L2 norm as the loss function. At each
iteration of the algorithm, a convex optimization problem
is constructed, whose solution yields derivative information
that can be used by a Newton-based root-finding algorithm
[32]. Each iteration of the Spgl1 method has an outer/inner
iteration structure, where each outer iteration first computes
an approximation to σ. The inner iteration then uses a spec-
tral gradient-projection method to approximately minimize
a least-squares problem with an explicit one-norm constraint
specified by σ. Some advantages of the Spgl1 method are
that only matrix-vector operations are required and numer-
ical experience has shown that it scales well to large prob-
lems.

2.2.4 Fpc
The Fpc package (fixed point continuation method) [20] ap-
proximates the solution a by solving

min
{a}
||a||1 +

µ

2
∗ ||F (X; a)− y||22. (9)

This problem formulation seeks to minimize the weighted
sum of the norm of the coefficients and the error of the so-
lution, the left and right terms respectively. The sparsity of
a is controlled by the size of the weighting parameter µ. In-
creasing µ places more importance on minimizing the error,
and reduces the ratio of the penalty to the error. Equation
(9) is a reformulation of problem (5) with the lasso penalty,
and is referred to as a basis pursuit problem in signal pro-
cessing. The relation of the two problems can clearly be seen
if, for any λ value, µ is chosen to be

µ =
2

Nλ

and equation (9) is multiplied by λ. Fpc was developed for
compressing signals by extracting the central components
of the signal. Fpc uses the reformulations of the optimal-
ity conditions for the l2 to declare a shrinkage operator sν ,
where ν is a shrinkage parameter that has both an effect
on the speed of convergence and how many non-zero entries
a∗ has. The operator sν acts on a supplied initial value
a0 (which we chose to be the null solution) and finds our
solution a∗ through a fixed point iteration.

2.3 Extension to Multi-class Classification
The rule ensemble method is designed for binary classifica-
tion problems, but many datasets contain multiple classes
that one needs to identify. To be applicable to classification
in general, we extend the rule ensemble to multi-class prob-
lems. The regression performed to assemble the rules in the
ensemble hinder the rule ensemble from being extended to
problems where the classes are not ordered. To identify mul-
tiple classes, we base a method on the one-versus-all (OVA)
classification technique, which has successfully been used to
extend many binary methods into multi-class algorithms [22,
29]. Other methods for extending binary classification algo-
rithms exist; however, many are more expensive than OVA,
yet provide no more utility [27].

Generally for a problem with J classes, OVA classification
performs J binary tests, where the jth test checks if an ob-
servation is or is not a member of the jth class. For the rule
ensemble method we use a modified form of OVA classifica-
tion. We perform J binary tests and each test returns a real
valued prediction Fj . In the original method the label was
predicted to be the sign of the real valued prediction. In the
case of multiple classes, we avoid having multiple positive
entries in the label vector ŷ by taking the prediction to be
the class j∗, where Fj∗ is greater than any other class label
prediction. Choosing the largest label prediction is sensible,
since the more confident the algorithm is that the observa-
tion is in a certain class, the closer to 1 the label prediction
will be.

This section has provided a brief introduction to the origin of
the ensemble method that was introduced by Friedman and
Popescu [17, 19] and that is used in this study. Other papers
provide more details on the algorithms we use to compute
the coefficients [15, 18, 20, 32].

3. DATASETS AND METHODS FOR EXPER-
IMENTS

To test the behavior of the rule ensemble method on a binary
classification problem, we used a dataset of images taken by
a telescope [6, 24, 26], the goal being to identify potential
supernovas. The initial data had three images for each ob-
servation. Those images were processed to yield 39 statis-
tics for each observation that described the distribution and
color of individual pixels within the original three images.
These statistics became the attributes for the dataset and
the observations were labeled with +1, -1 if they were or
were not, respectively, an image of a supernova-like object.
The dataset contains a total of 5,000 positive and 19,988
negative observations.

For a testing procedure on the binary supernova data, we



Set Name Attributes Observations Classes
1 breast-w 9 699 2
2 glass 9 214 7
3 ion 34 351 2
4 iris 4 150 3
5 pendigits 16 10992 10
6 phoneme 5 5404 2
7 pima 8 768 2
8 sonar 60 208 2
9 vehicle 18 846 4

10 waveform 21 5000 3

Table 1: Description of UC Irvine datasets used for
multi-class problems.

randomly select 2,500 positive observations and 2,500 nega-
tive observations for a training set, and then use the remain-
ing data for the testing set. We use this ratio of positive to
negative observations based on previous work that was done
in this application [1]. This selection process is repeated 10
times for cross-validation.

We assess the utility of the rule ensemble for multi-class
problems on 10 datasets from the UC Irvine Machine Learn-
ing Data Repository [14] with five 2-fold cross-validation
tests. We compare the accuracy of the rule ensemble with
the classical bagging and boosting methods using OpenDT
[2]. The datasets are briefly described in Table 1 and are
taken from a wide variety of applications. The UC Irvine
datasets and this testing procedure are chosen because they
are standard for testing machine learning methods, includ-
ing decision tree ensemble methods [3, 12, 25].

False positive and false negative error rates are used to as-
sess the accuracy of the methods in addition to the overall
error rate. The false positive rate is the ratio of observations
misclassified as positive to the total number of negative ob-
servations in the test set, while the false negative rate is the
ratio of observations misclassified as negative to the number
of positive observations in the test set. The overall error rate
is the ratio of observations misclassified to the total number
of observations in the test set.

Experiments using the rule ensemble method were run using
MatlabTM7.10 on a MacBook Pro with a 2.66 GHz Intel Core
i7 processor.

4. BINARY CLASSIFICATION RESULTS
To study the behavior of the rule ensemble method with
a variety of weighting schemes, we first consider supernova
dataset, which has binary class labels.

4.1 Rule Ensemble with PATHBUILD
Effect of Using the τ Threshold as Penalty The ef-
fect of the variable τ , that controls how many directions are
updated at each iteration of Pathbuild in the thresholded
gradient descent method is shown in Figure 1. An increase
in τ causes a higher threshold that results in fewer terms
being included in each iteration of the coefficient finding
method. Models built with a larger value of τ are also less
accurate and have higher variance in the error rate. Within
a certain range, decreasing τ further does not offer much
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Figure 1: Error rate increases as τ increases and
restricts the number of coordinates that Pathbuild
advances in at each iteration. This experiment was
run with each tree having an average of 20 terminal
nodes and 600 maximum rules.

increase in the predictive capability of the model. In this
example, we see that when τ is between 0 and 0.4 there
isn’t a large increase in error rate, so using a weaker thresh-
old of τ = 0.4 will not significantly compromise the accuracy
of our model. This is a good result, as a larger threshold de-
creases the computational expense of each iteration of the
gradient descent method. The result that τ = 0.4 produces
similar error rates to using τ = 0 means that we can get the
same accuracy with fewer terms, less computation, and thus
in less time.

4.2 Rule Ensemble with GLMNET
Here we use the rules generated in the previous experiment
with Glmnet to build models using the coefficients that are
generated at each step of the path λ ∈ [λmin,∞]. Figure 2
shows how the accuracy of the method changes as the weight
of the penalty used to find the coefficients changes. The so-
lution with Glmnet when λ is small results in slightly less
error than the solution with Pathbuild when τ is small.
The variance in the error rates from solutions found with
Pathbuild is less than the variance of error rates from solu-
tions found with Glmnet. Both solutions yield false positive
rates that are more than twice as large as the false negative
rates; this is probably a result of the ratio of positive to
negative observations in the test set being small. The error
rate slowly decreases as λ decreases, but then the error rate
stabilizes when λ is very small, λ < 0.01. It is interesting
that the variance in error rates of the solutions is relatively
constant as λ changes.

4.3 Rule Ensemble with SPGL1
The results using Spgl1 are shown in Figure 3. The accu-
racy of the Spgl1 solution increases when σ increases. The
error rates are similar to those found by Pathbuild and
Glmnet, but slightly higher than Glmnet even when σ is
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Figure 2: Error rate decreases when Glmnet is used
to solve for the coefficients and the constraint pa-
rameter λ decreases.

large.

4.4 Rule Ensemble with FPC
The results of solutions generated by Fpc are shown in Fig-
ure 4. They are roughly as accurate as the solutions gener-
ated with the previous solvers. Fpc also has an explicit dis-
play of the thresholding as seen in Figure 5; the norm of the
coefficients increases dramatically then asymptotically ap-
proaches a certain value. The asymptotic behavior is caused
by the threshold constricting the coefficients and essentially
preventing another coefficient from stepping off of zero. The
thresholding is also seen in the error rate decreases as the
weight on the mean squared error is increased, but stabilizes
once the training set is reasonably fit. The value of µ where
the error stabilizes is the value needed to build the model,
but unfortunately it is not clear how to choose this value of
µ a priori. The need for a selection of the penalty parame-
ter is one of the difficulties that Fpc, Spgl1, and Glmnet
have. Pathbuild shares a similar problem with the need to
selection the gradient descent constriction parameter τ .

4.5 Identifying Important Attributes Via Rule
Importance

Figure 4 shows that the rule ensemble method is quite suc-
cessful at correctly classifying observations when all of the
attributes are used to generate rules and build the model.
Attributes have variable importance in the model and we
suspect that not all of the 39 attributes in the full dataset
are needed to model and correctly predict class labels. We
want to use the rule ensemble method to select only the
attributes that are important and save the expense of con-
sidering the other less important variables.

The importance of a rule is indicated by the magnitude of
the coefficient for that rule. The larger a coefficient is in
magnitude, the more important the corresponding rule is,
as that rule will have a larger contribution to the model. To
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Figure 3: Error rate decreases when Spgl1 is used
to solve for the coefficients and the constraint pa-
rameter σ increases.

Rule rk |ak|
x2 ≥ -0.315 & x18 ≥ 0.047 0.1045

x29 <-0.251 0.0725
x23 ≥ -0.606 0.0317
x1 < -0.324 0.0274
x12 ≥ 0.260 0.0193

Table 2: Example of ordering rules by importance.
These are the five rules with greatest importance in
the first model as selected by Fpc with µ = 0.25.

sift out the most important attributes, we look at which rules
Fpc considered important at different values of µ. Rules are
ordered by the magnitude of their corresponding coefficient
and if a rule is one of the 20 most important in a solution
generated with a certain µ (we considered 13 values of µ),
then that rule receives a vote. An example of ordering the
rules is in Table 2 where the 5 most important rules from
one test with a given µ are ordered. Figure 6 shows for
how many values of µ each rule was considered to be one of
the 20 most important; this indicates that certain rules are
important in solutions with all values of µ tried, while oth-
ers are considered important only when certain µ are used.
This process is continued for 5 different cross-validation sets,
which yields 5 sets of rules that were in the top 20 most im-
portant rules for at least one value of µ. The sets of rules
are decomposed into sets of the attributes that were used
to make up the rules in each set. Then we let the 5 rep-
etitions vote on which attributes are needed to make the
most influential rules and keep only the attributes that are
in the set of important attributes for at least 3 out of the 5
repetitions. This set of attributes forms a smaller subset of
the total attributes available in the initial dataset; it is the
subset attributes that are used in at least one of the most
important rules in at least 3 of the 5 repetitions.

For the supernova dataset, the smaller subset of attributes
included only 21 of the 39 original attributes. Tests were
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Figure 4: Error rate decreases when Fpc is used
and the weight on the risk or mean squared error is
increased (µ increased).

repeated using the same cross-validation sets and method
parameters as were used in Figure 4, but using only the
smaller subset of 21 attributes to train on rather than all 39
attributes. Figure 7 compares the error rate of the method
when 21 attributes were used with the error rate of the
method when all 39 attributes were used. The results show
that the accuracy of the method improves when we reduce
the number of attributes used in the model. The method
successfully ranks rules and identifies more important at-
tributes. The method loses accuracy when the less impor-
tant features are included; in essence, the extra attributes
act as noise. After the method identifies these attributes as
less important and we remove them, the method is able to
return an even more accurate model and the insight of which
attributes are not adding predictive capability to the model.
Garnering better accuracy with fewer attributes may allow
the extra attributes to be excluded from the data collection,
which will save time in collecting data, save space in storing
data, and allow an overall better analysis.

5. RESULTS ON MULTI-CLASS PROBLEMS
Here we use the method described in section 2.3 to extend
the rule ensemble to multi-class problems. To consider the
overall utility of the method for classification problems, we
compare the rule ensemble method on multi-class problems
with two other common multi-class ensemble methods: bag-
ging and boosting. We let bagging use 1000 trees and boost-
ing use 50 trees in five 2-fold cross validations. Both bag-
ging and boosting employ random forests for growing trees.
These testing parameters are the same that were used in a
previous comparison of ensemble methods [3]. Label predic-
tions from ensembles of trees can be made by taking a vote
of each tree’s prediction or by averaging the predictions from
all the trees. Results for both methods are presented. Mini-
mal tuning of tree size, number of rules used, and constraint
parameter τ was done to use the rule ensemble method on
each dataset.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18
0

100

200

300

400

500

600

700

800

µ

N
um

be
r 

of
 C

oe
ffi

ci
en

ts
 in

 C
at

eg
or

y 

Sparsity of solution with FPC 

 

 

a
k
 = 0

a
k
 < 0

0 < a
k

Figure 5: The sparsity of the solution is indicated by
the number of coefficients that are equal to zero. As
µ is increased, more terms are included in the model.
The sparsity of the solution stops decreasing when
µ is large. Here 78% of the coefficients are trivial
when µ = 0.19.

5.1 Comparison with Bagging in OVA Classi-
fication on Vehicle Dataset

Figure 8 compares using the rule ensemble and bagging on
the vehicle dataset. Bagging here is used with binary trees
in an OVA classification scheme rather than in its standard
form, which uses multi-class decision trees. The error at
predicting affinity to each class is in Figure 8 and shows
that the rule ensemble beats bagging for the majority of the
classes. Figure 8 also shows the varying level of success that
the ensemble techniques had at predicting each class, which
ensemble was better for a class was not consistent for all
classes in a dataset. Some classes are easier to identify than
others (e.g. “opel” is easier to distinguish than van).

5.2 Results on Multi-class Datasets
The results of the multiple class tests are given in Figures
9-10. The rule ensemble was much stronger than both tree
ensembles if averaging of each tree’s label prediction was
used for classification. However, Figure 9 shows that if the
trees voted on which class label is best, then the rule ensem-
ble was better on some datasets, but not others. Voting was
better at label prediction than averaging base learner predic-
tions, but neither boosting nor bagging provided a universal
win over the rule ensemble, as can be seen in Figure 9. What
is not apparent in Figures 9-10 is that the rule ensemble was
a much better predictor for binary labels than the tree en-
sembles. This result is apparent in Figure 8 where nearly ev-
ery individual class is better predicted by the rule ensemble
method. Figure 10 shows the accuracy of the rule ensemble
method with different coefficient solvers. Some datasets are
easier to classify (larger percent of data correctly classified)
while others, such as the #2 dataset glass, were more diffi-
cult to classify for all the methods. No solver was universally
better for finding the rule weights. Each solver returned a



0 5 10 15 20 25 30 35 40 45
0

2

4

6

8

10

12

14

Index of Coefficient

N
um

be
r 

of
 T

im
es

 C
oe

ffi
ci

en
t A

pp
ea

rs
 in

 T
op

 2
0

Votes Indicating Variable Importance of Coefficients

Figure 6: This histogram shows how many times
a rule was one of the top 20 most important rules
in a solution. Solutions were generated at each of
13 different values of µ, as shown in Figure 4. Rules
that received 13 votes were one of 20 most influential
rules for every value of µ tried. Only rules that were
in the top 20 most influential for at least one solution
are shown. The attributes used to compose these
rules were used to find a smaller subset of attributes
to train on for the results in Figure 7.

sparse solution, but there was little consistency in which
solver returned the sparest solution. Some solvers returned
the sparest solution on one dataset, but not on another. The
only general trend was that Pathbuild usually returned the
least sparse solution. The constraint parameter τ could be
adjusted to return a solution that had a comparably few
number of rules to the other solvers, but at the expense of
accuracy. Pathbuild had to include many more rules in the
final model to yield a model that had comparable accuracy
to models that had coefficients generated with one of the
other solvers. It is not yet clear how to choose between the
other solvers for a given dataset.

6. PREVIOUS WORK
Rule ensembles have received a lot of attention, partially due
to their successes demonstrated in several applications. The
original Friedman and Popescu method was used in both a
study of chemical mutagenicity [23] and a search for super
symmetric particles in data from the Large Hadron Collider
[9]. The version of the rule ensemble proposed by Fried-
man and Popescu has also been included in larger machine
learning tools [21].

Various rule generation schemes that focus on how to quickly
grow or generate non-overlapping rules have been proposed.
SLIPPER [8] and LRI [33] are two methods that build an
ensemble of boosted rules and incorporate a re-weighting
of rules. A more recent method proposed by Rückert and
Kramer [28] uses a regularized regression to combine rules
into a classifier. This method is very different from the
SLIPPER, LRI, and the rule ensemble considered here as
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Figure 7: Comparison of overall error rate when
fewer attributes are used. The preliminary tests
used all 39 attributes in the dataset. The subse-
quent tests used only the subset of 21 attributes that
were used to construct the most important rules in
the preliminary tests. Using the restricted set of at-
tributes gives a lower error rate indicating that the
rule ensemble method successfully identified impor-
tant attributes in the dataset.

the initial rules are simply defined, without reference to
the labels, and then the regression method is used to se-
lect and re-weight the predefined rules. Another method
proposed generates individual rules by greedily minimizing
the negative log likelihood [11] and has been used on multi-
class problems, but does not offer the interpretability of rule
weights. Another group proposed to generate simple clas-
sifiers as rules [4], but not use any weighting to combine
the rules into a linear model. This method was modified
to accommodate missing data [5], but was not applied to
multi-class dataset and still did not use sophisticated rule
weighting.

The advantage of the rule ensemble used here is that it gen-
erates rules that reflect behavior in the dataset and then
uses a regularized regression to eliminate excess rules and
indicate more important rules and features. The difference
between the previous work and our work here is that all of
the previous proposed methods have looked at how to gen-
erate rules, while we focus on how to combine them into
a model. Regression methods for calculating appropriate
weights have been developed, but they have not been stud-
ied in this application of rule ensembles. Further, individual
applications of Friedman’s and Popescu’s method have not
been able to apply the method to multi-class methods. As
far as we can determine, this paper is the first time that
this more modern rule ensemble method has been tested on
multi-class datasets.

Both the rule generation phase and the rule weighting phase
are important to the outcome of the model. There has been
a lot of focus on how to build rules, but here we look at
different methods for weighting the rules and see how sen-
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Figure 8: Binary tests on each class of vehicle data.
Figure shows accuracy when using bagging in an
OVA classification method rather than with multi-
class decision trees.

sitive the final model is to the method used for rule weight-
ing. Finally, we look at a different feature selection scheme
than was suggested [19] and empirically show that this rule
ensemble can be sued to reduce the number of features in
a dataset without adversely affecting the accuracy of the
model. While previous studies have used the rule ranking
to interpret the importance of features [19], [23], [9], we use
the rule ranking to actually select features and reduce the
dimension of the dataset.

7. CONCLUSIONS
We examined four different methods to find coefficients to
assemble rules into a linear model. All 4 methods present
the challenge of needing to select a constraint parameter
that controls the sparsity/accuracy trade-off of the solution
that they return. If each parameter is chosen correctly, then
the methods are capable of producing coefficients that allow
for similar accuracy in the model. The different approaches
that the methods take for finding the coefficients do result
in slightly different rankings of the rules. The difference in
coefficients that each method considers important is shown
in Figure 11. Ideally all solvers would select the same terms
to be the most significant and would order the terms by im-
portance the same way. Figure 11 shows that some rules
that one method considers important are not considered to
be important to another method. Fpc and Spgl1 order
coefficients similarly, which is indicated by Spgl1 giving a
significant magnitude to coefficients that Fpc also gives a
significant magnitude to. Glmnet’s and Pathbuild’s or-
dering share less similarity with Fpc and Spgl1, as indi-
cated by coefficients such as 9 and 18 that Glmnet and
Pathbuild give a significant magnitude to, but both Fpc
and Spgl1 give small values to. The difference in methods
is also reflected in the sparsity of the solutions that they
return. To achieve similar accuracy (taken here at 96% ac-
curacy), Pathbuild returns a solution with 40-50% of the
coefficients non-zero while the other methods return much
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Figure 9: Comparison of the misclassification rate of
the rule ensemble method with that of bagging and
boosting ensemble methods when voting is used.

sparser solutions that have only 12-19% of the coefficients
non-zero. In general, Spgl1 returned the sparsest solutions
and Pathbuild returned the least sparse solutions for mod-
els with similar error rates.

We also showed the utility of the rule ensemble method for
identifying important attributes in a dataset containing im-
ages of potential supernovas. The rule ensemble method
has the benefit over tree methods of providing insight into
a dataset by returning weighted rules. Rules with large
weights have a larger effect on the model and thus can be
thought of as more important than other rules. We used
the importance of such rules to alert us to the more signif-
icant features in the dataset by looking at which features
the important rules are defined on. This technique allowed
us to select 21 attributes out of the 39 available and reduce
the error rate of the model by building models only on the
reduced set of attributes. Traditional algorithms that use
ensembles of decision trees, such as boosting and bagging,
aren’t able to provide this insight into the importance of
certain variables of a dataset because they do not rank or
weight of rules.

As a final step, we extended the rule ensemble method to
multi-class problems and compared it with two well-known
tree ensemble methods, namely boosting and bagging. We
found that extending the rule ensemble to work on multi-
class problem with an OVA-inspired technique, the rule en-
semble method performed comparably to the tree methods
on a set of 10 classical datasets. This result highlights the
power of the rule ensemble method, as we had expected the
tree ensemble methods to do better on multi-class problems.
Tree ensembles can use multi-class decision trees, which pro-
vide what one would think is a more natural extension to
multi-class problems than using the OVA method. How-
ever, the rule ensemble method returned comparable rates
of accuracy on most datasets and even performed better on
some of the datasets. The discrepancy between the tree en-
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Figure 10: Comparison of the error rate on UCI
datasets from models that were built with the rule
ensemble method using different solvers to find the
coefficients a.

sembles with voting and the rule ensemble was larger on
problems that had a relatively large number of labels, such
as the pendigits dataset, which had the most labels out of
all the datasets, than on datasets with fewer labels. To im-
prove the accuracy of the rule ensemble on problems with
multiple classes, we would like to try using multi-class de-
cision trees to build the rules and then relabel the nodes
for each binary problem. This technique might yield bet-
ter rules as it would allow for differentiation between the
classes in the rule building phase. Better rules would then
allow for a clearer separation of binary labels in the regres-
sion phase. This technique would also make the training
phase more efficient, as it would only require one set of rules
to be constructed rather the as many sets of rules as there
are classes.

The rule ensemble method has the advantage over some
other methods by being able to identify relationships and hi-
erarchies between variables to a certain extent when building
the decision trees. The rules in the decision trees get more
complex the deeper the tree is grown and also are able to
have limited support in the parameter space, so they only
affect certain observations that fall in that space. By includ-
ing more variables, complex rules can be seen as resembling
discrete correlations, and the post-processing of the rules
allows for overly simplified correlations (that precede more
complex rules in depth) to be removed from the model. The
post-processing also allows for overly complex rules to be
pruned from the model. Thus some variable interactions
can be captured by the rule ensemble method without any a
priori assumption that they exist, as is needed in standard
regression models, and excessive computation is not spent
considering correlations that do not exist.

We do not compare the computational efficiency of the rule
ensemble method with tree ensemble methods here, since it
is currently written in MatlabTM, while the tree ensemble
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Figure 11: Length of bars indicate the magnitude of
coefficients as calculated by different solvers. Only
the coefficients with the 10 largest magnitudes from
each solver are displayed. Coefficients plotted come
from solutions that yielded similar error rates: τ =
0.4 , µ = .11, σ = 8.5, λ = 0.014.

methods used are written in C. However, we do not expect
that the rule ensemble method will reduce the amount of
time necessary for the training portion of the algorithm to
run because it must perform the coefficient solving method
in addition to the tree growing. If the rule ensemble method
is able to prune a substantial number of repetitive or un-
necessary rules, then it is likely to run substantially more
quickly than the tree methods. Comparing the time effi-
ciency of the rule ensemble with other tree methods and
other machine learning techniques will be part of future
work. We do not present the computational efficiency of
the coefficient solving methods used in the rule ensemble
method for the same reason. Each solver is written in a
different programming language, and each will have to be
implemented in the same language and level of optimization
before a meaningful study can be performed.
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