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Abstract

Ensemble methods for supervised machine learning have become popular due to their ability
to accurately predict class labels with groups of simple, lightweight “base learners.” While
ensembles offer computationally efficient models that have good predictive capability they tend
to be large and offer little insight into the patterns or structure in a dataset. We consider
an ensemble technique that returns a model of ranked rules. The model accurately predicts
class labels and has the advantage of indicating which parameter constraints are most useful
for predicting those labels. An example of the rule ensemble method successfully ranking rules
and selecting attributes is given with a dataset containing images of potential supernovas where
the number of necessary features is reduced from 39 to 21. We also compare the rule ensemble
method on a set of multi-class problems with boosting and bagging, which are two well known
ensemble techniques that use decision trees as base learners, but do not have a rule ranking
scheme.

1 Introduction

Machine learning algorithms are popular tools for classifying observations. These algorithms can
attain high classification accuracy for datasets from a wide variety of applications and with complex
behavior. In addition, through automated parameter tuning, it is possible to grow powerful models
that can successfully predict class affiliations of future observations. A disadvantage, however, is
that models can become overly complicated and, as a result, hard to interpret and expensive to
evaluate for large datasets. Ideally we would like to generate models that are quick to build, cheap
to evaluate, and that give users insight into the data, similar to how the size of coefficients in a lin-
ear regression model can be used to understand attribute-response relationships and dependencies.

Ensemble methods are a class of machine learning algorithms that develop simple and fast algo-
rithms by combining many elementary models, called base learners, into a larger model. The larger
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model captures more behavior than each base learner captures by itself and so collectively the base
learners can model the population and accurately predict class labels [14]. Classical decision tree
ensemble methods, such as bagging and boosting, are well known and have been tested and refined
on many datasets [1, 8, 22]. In one such study, Banfield et al. [1] studied the accuracy of boosting
and bagging on a variety of public datasets and found that in general neither bagging nor boosting
was a statistically significantly stronger method.

In this paper, we modify, extend, and test an implementation [21] of the rule ensemble method
proposed by Friedman and Popescu [16] for binary classification with bagging and with boosting.
The Friedman and Popescu rule ensemble method is attractive, as it combines the rule weighting
or variable importance that regression provides with the quick decision tree methods and collective
decision making of many simple base learners. The method builds rules, that take the form of
products of indicator functions defined on hypercubes in parameter space. The rules are fit by
growing decision trees, as each inner node of a tree takes the desired form of a rule. The method
then performs a penalized regression to combine the rules into a sparse model. The entire method
resembles a linear regression model, but with different terms. Many ensemble methods provide
little insight into what variables are important to the behavior of the system, but by combining the
rules with regression, the rule ensemble method prunes rules of little utility and ranks remaining
rules in order of importance.

We also modified the rule ensemble method to use various coefficient solving methods on a set of
binary and multi-class problems. Previous implementations of this algorithm are either currently
unavailable [11] or have not been fully tested on a wide set of problems [7]. We extended the
rule ensemble method to multiple class classification problems with one versus all classification
[24] and tested it on classical machine learning datasets from the UC Irvine machine learning
repository [3]. These datasets were chosen because they have been used to test previous tree
ensembles [1, 8, 18, 22, 29] and countless other machine learning algorithms. Finally, we look at
different methods that can be used to solve for the coefficients and show how one can use the
rule ensemble method to reduce the dimension of a problem. We give an example of identifying
important attributes in a large scientific dataset by applying our techniques to a set of images of
potential supernova [4].

1.1 Overview of Rule Ensemble Method

Suppose we are given a set of data points {xi, yi}Ni=1, where xi denotes the ith observation, with
label yi. Each of the observations, x ∈ RK, has K attributes or feature values that we measure for
each observation. The matrix X will denote the entire set of all xi’s. The jth feature of the ith
observation is the scalar xij . Our goal then is to be able to predict what class y a future unlabeled
observation x belongs to. The method below focuses specifically on the binary decision problem
where y can be one of only two classes {−1,+1}. To classify observations we seek to construct a
function F (x) that maps an observation x to an output variable ŷ = F (x) that predicts the true
label y.

Define the risk of using any function that maps observations to labels as

R(F ) = Ex,yL(y, F (x)), (1)
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where Ex,y is the expectation operator. L(y, ŷ) is a chosen loss function that defines the cost of
predicting a label ŷ for an observation when the true label is y. While various loss functions have
been developed, in practice we will use the ramp loss function as it is particularly well suited to
the binary classification problem we consider [14, 16]. Within this framework we seek to find a
function, F ∗(x), that minimizes the risk over all such functions

F ∗(x) = argmin
F

Ex,yL(y, F (x)).

The optimal F ∗(x) is defined on the entire population. However, we only have a training sample of
observed data S = {xi, yi}Ni=1 so we will construct an approximation F̂ (x) to F ∗(x) that minimizes
the expected loss on this training set. We assume that the model F̂ (x) has the form of a linear
combination of K base learners {fk(x)}Kk=1:

F̂ (x; a) = a0 +

K∑
k=1

akfk(x). (2)

The next step is to find coefficients a = {a1, a2, . . . , aK} that minimize the risk (1). Like F ∗(x),
the risk is defined over the entire population, so we will use the approximation a∗ that minimizes
the risk over the given sample set of observations S. In particular, we take a∗ to be the solution
of

a∗ = argmin
{a}

ESL(y, F (x; a)), (3)

= argmin
{a}

1

N

N∑
i=1

L(yi, F (xi; a)), (4)

= argmin
{a}

1

N

N∑
i=1

L

(
yi, a0 +

K∑
k=1

akfk(xi)

)
. (5)

If the loss function, L, is taken to be the mean squared error then this is simply a linear regression
problem.

In many cases, a solution to equation (5) is not be the best for constructing a sparse interpretable
model or a predictive model that is not overfit to the training data. Instead, one would like to have
a solution that has as few components as possible. To achieve a sparse solution, a penalty term
can be included that prevents less influential terms from entering the model. Here, we use the L1

(lasso [26]) penalty and the approximation â, which is the solution to the penalized problem

â = arg min
{a}

N∑
i=1

L

(
yi, a0 +

K∑
k=1

akfk(xi)

)
+ λ

K∑
k=1

|ak|. (6)

The impact of the penalty is controlled by the parameter λ ≥ 0. This penalized problem has
received a great deal of attention [9, 13, 17] and enables both estimation of the coefficients as well
as coefficient selection.
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This section provided a brief introduction to the methods used in this study and that were developed
by Friedman and Popescu [14, 15, 16]. Other papers provide more details and and justification
of the rule ensemble method [14, 16] as well as the method that is used to assemble the rules in
the latter part of the algorithm [15]. Additional sources also provide more details for the other
algorithms that we employed to compute the coefficients [13, 17, 28].

In section 2, we will discuss how to build base learners fk. Section 3 will provide more details on
the regression method used to solve equation (6). Sections 5-6 will present computational results
comparing the rule ensemble method with other ensemble methods.

2 Base Learners

The base learners fk in equation (??) can be of many different forms. Decision trees, which have
been used alone as classification models, have been used as base learners in ensemble methods such
as bagging, random forests, and boosting. Decision trees are a natural choice to use for a learner,
as many small trees (meaning each tree has few leaves) can be built quickly and then combined into
a larger model. The bagging method grows many trees, then combines them with equal weights
[5]. Boosting is more sophisticated as it tries to build the rules in an intelligent manner, but it still
gives each tree an equal weight in the ensemble [10].

2.1 Using Rules as Base Learners

In the rule ensemble method, simple rules denoted by rk are used as the base learners and take the
form

rk(xi) =
∏
j

I(xij ∈ pkj), (7)

where I(xij ∈ pkj) is an indicator function. The indicator function evaluates to 1 if the observed
attribute value xij is in the parameter space defined by pkj , and 0 if the observation is not in that
space. Each pkj is a constraint that the kth rule assigns to the jth attribute. For convenience
we will denote pk = (pk1, . . . ) to be the vector of parameter constraints that an observation must
meet to have the kth rule to evaluate to 1. Note that a given rule can have multiple constraints
on a single attribute, as well as a different number of constraints (indicator functions) than other
rules. To emphasize that each rule is defined by a set of parameters we can write rk(xi) = rk(xi; pk).

To fit a model we need to generate rules by computing parameter sets {pk}Kk=1. In this study, we
will use decision trees to generate rules, where each internal and terminal node (not the root node)
of a decision tree takes the form of a simple rule defined by (7). Having rk(xi; pk) = 1 means
that the kth rule is obeyed by the ith observation and that it was sorted into the kth node of the
decision tree that generated the rule.

2.2 Tree Construction - Rule Generation

Decision trees are built using the CART (Classification and Regression Trees) algorithm [6], which
is summarized Table 1 and outlined below. We let

Tm = {rmj }
2(tm−1)
j=1
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denote the set of rules contained in the mth tree which has tm terminal nodes. Let

Tm(xi) =

2(tm−1)∑
j=1

rmj (xi, p
m
j ))

denote the prediction that the mth tree makes for observation xi; it is the evaluation of the rules
in Tm on xi.

Each tree is built on a random subset of observations Sm(η) ⊂ {xi, yi}Ni=1, as training on the entire
dataset can be expensive as well as overfit the tree. η is a parameter that controls the diversity of
the rules by defining the number of observations chosen to be in the subset Sm(η). As subset size
η decreases, diversity increases with potentially less global behavior getting extracted. Diversity
between the trees can also be increased by varying the final size of each tree. Clearly larger trees
include more precise rules defining terminal nodes and thus are inclined to overtrain, but confining
the size of a tree too strictly can prevent it from capturing more subtle behavior within the dataset.
To avoid under or overfitting, we grow each tree until it has tm terminal nodes, where tm is drawn
from an exponential distribution. The distribution has mean L̄, which does have to be selected a
priori. The size of a tree is determined by growing each branch until no further nodes can be split
because one of the following termination conditions has been met:

1. The number of observations in a terminal node is less than some selected cutoff,
2. The impurity of a node is less than a selected cut off,
3. The total number of nodes in the tree is greater than tm.

The splitting attribute and value is chosen as the split that minimizes the sum of the impurities
(variance of the node) of the two child nodes if that split were taken. For each split only a random
sample of attributes are considered in order to both increase the diversity of learners and decrease
training time for huge datasets.

2.3 Gradient Boosting

To avoid simply regrowing overlapping rules, with no further predictive capability, we use gradient
boosting to intelligently generate diverse rules. With gradient boosting, each tree is trained on the
pseudo residuals ρm of the risk function evaluated on the test set rather than training directly on
the data [18]. The ith element of the pseudo residual vector in the mth iteration is given by

ρmi = −
[
∂L(yi, F (xi))

∂F (xi)

]
F (xi)=Fm−1(xi)

(8)

for all xi ∈ S(η)m. Each ρm is a vector with as many entries as there are observations in the
subsample Sm(η) on which it is evaluated. Fm(x) is the memory function at the mth iteration. It
gives a label prediction based on all the previous learners (trees) that were built. Note that Fm(x)
is an intermediate model of trees that is used in rule generation, while F (x) is the final prediction
model that has rules as linear terms. Training on the pseudo residuals allows one to account for
what the previous trees were unable to capture. This method is similar to the method of regressing
on residuals in multidimensional linear regression. Using pseudo residuals also provides another
termination condition. If the pseudo residuals shrink below a chosen value, enough behavior has
been captured and no further rules are generated. A shrinkage parameter, 0 ≤ ν ≤ 1, controls the
dependency of the prediction on the previously built learners. Using ν = 0 results in no dependence
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Rule Generation Algorithm

Input: data {xi, yi}Ni=1 where xi ∈ Rk and yi ∈ R

F0(xi) = arg min
c

N∑
i=1

L(yi, c); c ∈ R

For m = 1 . . .M
select random subset Sm(η) ⊂ {xi}Ni=1

select number of terminal nodes tm ∼ exp(L̄)
calculate pseudo residuals ρm with (8)
build tree Tm on {yi, ρm,i} for all i ∈ Sm(η)
update Fm(xi) = Fm−i(xi) + νT (xi)

End if |ρm|∞ small enough
total rules ≥ max

Return: rules = {internal nodes of Tm}Mm=1

Figure 1: Outline of how to generate rules

on past calculations, so that the next rule is built directly on the data labels and have had no part
of the labeled value “accounted for” by dependence on previous calculations.

3 Weighting Rules

To combine the rules into a linear model, we need to approximate the coefficients â defined in equa-
tion (6). Here we implement a method that approximates â with an accelerated gradient descent
method developed by Friedman and Popescu [15] and summarized in Figure 2. We will refer to
this method as Pathbuild, as it does not solve (6) explicitly, but rather constructs â by starting
with a null solution and then incrementing along a constrained gradient descent path, distinguished
by a parameter τ . Alternative algorithms for approximating â will be discussed and compared later.

We would like find a value for the lasso penalty that yields the sparsest solution to (6) while
maintaining a model with high accuracy. We initialize the coefficients to 0 and find the constant
intercept a0 by the value that minimizes

a0 = arg min
α

N∑
i=1

L(yi, α).

This may be better understood by considering that α will be the mean of (y1, . . . , yN ) when the
loss is mean squared error. We approximate â iteratively and calculate the l + 1st iteration, al+1,
by taking

gk(X; a) =
∂

∂ak

1

N

N∑
i=1

L(yi, F (xi; a)),

k∗ = {k : gk(X; a`) = ||gk(X; a`)||∞}.
We update the coefficients by

a`+1
k =

{
a`k, if k = 1..K, k /∈ k∗

a`k + δgk(X; a`) if k ∈ k∗,
(9)
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Pathbuild: Gradient Regularized Descent Algorithm

set constant a0 = min
α

N∑
i=1

L(yi, α)

a0k = 0, k = 1, . . . ,K
For ` = 1, . . . , max iterations

gk(x; a`) =
∂

∂ak

1

N

N∑
i=1

L(yi, F (xi; a
`))

a`+1
k =

{
a`k, if gk(x; a`) ≥ |g`k|∞
a`k + δgk(x; a`) otherwise

Stop if risk increased
l > max iterations
gradient < tolerance

Figure 2: Outline of Pathbuild method

where gk(X; a`) is the gradient of F (x) calculated with the `th iteration and evaluated on the
entire dataset. The scaling parameter δ > 0 can be set constant or chosen at each step in a clever
manner. Note that in equation (9) only a single component of the coefficient vector is updated at
any iteration and thus only a single rule is able to enter the model at an iteration. The method
only progresses in the direction of rules which have a large effect on the predictive capability and
avoids steps that are of trivial effect. This condition may be relaxed by incrementing all of the
components of a that have a sufficiently large gradient

k∗ = {k : gk(x; a`) ≥ τ ||gk(x; a`)||∞}.

The parameter τ ∈ [0, 1] controls how large a component of the gradient must be relative to the
largest component in order for a coefficient to be updated. Computing the gradient is expensive,
but reorganizations and intelligent approximations to accelerate the computation are presented for
three different loss functions in the appendix [15]. The tricks used for this “fast” method are most
effective for ramp loss and make Pathbuild a particularly attractive method.

In sections 6.2-6.4 we will compare Pathbuild with three different algorithms that can be used
to solve for the coefficients. Each algorithm uses a slightly different formulation of the problem
defined in equation (6) and a different technique to encourage a sparse solution that also has little
risk. The three algorithms also use mean squared error to define loss rather than the ramp loss
function that we use in Pathbuild.

4 Datasets and Methods for Experiments

To test the behavior of the rule ensemble method on a binary classification problem, we used a
dataset of images taken by a telescope [4, 20, 23], the goal being to identify potential supernovas.
The initial data had three images for each observation. Those images were processed to yield 39
statistics for each observation that described the distribution and color of individual pixels within
the original three images. These statistics became the attributes for the dataset and the observations
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Set Name Attributes Observations Classes

1 breast-w 9 699 2
2 glass 9 214 7
3 ion 34 351 2
4 iris 4 150 3
5 pendigits 16 10992 10
6 phoneme 5 5404 2
7 pima 8 768 2
8 sonar 60 208 2
9 vehicle 18 846 4

10 waveform 21 5000 3

Table 1: Description of UC Irvine datasets used to compare ensemble methods on multi-class
problems.

were labeled with +1, -1 if they were or were not, respectively, an image of a supernova-like object.
The dataset contains a total of 5,000 positive and 19,988 negative observations.

To test how the rule ensemble works on the binary classification problem, we use a procedure that
first randomly selects 2,500 positive observations and 2,500 negative observations for a training
set, and then uses the remaining data for the testing set. This selection process is repeated 10
times for cross-validation. False positive and false negative error rates were used to assess the
accuracy of the methods in addition to the overall error rate. The false positive rate is the ratio of
observations misclassified as positive to the total number of negative observations in the test set,
while the false negative rate is the ratio of observations misclassified as negative to the number of
positive observations in the test set. The overall error rate is the ratio of observations misclassified
to the total number of observations in the test set. The experiments show the effect of the rule
complexity (tree depth), number of rules available (tree size), and τ thresholding in Pathbuild on
the accuracy of the method. We also consider the effect of substituting different coefficient solvers
in place of Pathbuild.

To assess the overall utility of the rule ensemble we extend our numerical experiments to multi-class
problems, which are described in section 5. We compare the rule ensemble with classical bagging
and boosting methods by testing all three algorithms on 10 datasets from the UC Irvine Machine
Learning Data Repository [3] with five 2-fold cross-validation tests. A 2-fold cross-validation test
is similar to the method described above except that the dataset is split into equally sized subsets
with the proportion of observations in each class the same in both subsets. Then one set is used for
training and the other for testing, and then the sets are switched and retrained and retested. The
datasets are briefly described in Table 1. The UC Irvine sets are chosen since they have been used
in many machine learning studies [8, 22] and are used by Banfield et al. [1] to compare bagging with
boosting. The UC Irvine sets are taken from a wide variety of applications, so they also present a
good breadth of data to test the versatility of methods.

Experiments using the rule ensemble method were run using MatlabTM7.10 on a MacBook Pro
with a 2.66 GHz Intel Core i7 processor.
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5 Multiple Class Classification Results

The rule ensemble method is designed for binary classification problems, but many datasets contain
multiple classes that one needs to identify. To be applicable to classification in general, we need to
extend the rule ensemble to many class problems. Decision trees easily extend to multiple classes
but the regression performed to assemble the rules in the rule ensemble prevent the rule ensemble
from being extended to classification problems where the classes are not ordered. To identify multi-
ple classes with the rule ensemble method we use the one-versus-all (OVA) classification technique
that has been used for successfully extending many binary classification algorithms into multi-class
algorithms [19, 25]. Other methods for extending binary classification algorithms to multiple class
problems exist, such as all-versus-all classification. However, these methods require a large number
of models to be built and are thus more expensive than OVA and frequently provide no more utility
than the OVA classification method [24].

For a problem with J classes, OVA classification performs J binary tests, where the jth test checks
if an observation is a member of the jth class or not the jth. Each observation gets a vector label
prediction ŷ ∈ RJ , where each entry ŷj is from the binary test classifying the jth class versus any
other class. The prediction ŷ is a vector of -1’s with a single positive entry. The index of the
positive entry is the class that the observation is predicted to be from.

To extend the rule ensemble method we perform J binary tests and each test returns a real valued
prediction Fj . In the binary problem the label ŷj is predicted to be the sign of the real value
returned. However, in this setting it is possible that one of the binary models will misclassify the
observation and result in Fj being positive for more than one value of j. If we just took the sign
of each Fj then we would have a vector ŷ with multiple positive entries, indicating the observation
was in multiple classes. In the event that Fj is positive for more than one value of j, we take
the prediction to be the class that has the most definitive prediction, i.e. the class j∗ where Fj∗

is greater than any other class label prediction. Choosing the largest label prediction is sensible,
since the more confident the algorithm is that the observation is in a certain class, the closer to 1
the label prediction will be. The closer to 0 a class prediction is, the less certain the algorithm is
of the observation’s class affinity.

Here we compare the rule ensemble method, using Pathbuild, with results from bagging and boost-
ing tree ensemble methods. To compare we employ 10 datasets from the UC Irvine data repository
[3] and the testing method parameters previously used to compare various ensemble methods [1].
Bagging uses 1000 trees, boosting uses 50 and both employ random forests for growing trees in
five 2-fold cross validations. Tree ensemble labels can be estimated by a voting procedure, the
prediction is the class that most of the trees predict the observation to be part of, and an averaging
procedure, the label is the average of the the predictions made by all the trees. Results for both
methods are presented. Minimal tuning was used to run the rule ensemble method on different
datasets.
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Figure 3: Binary tests on each class of vehicle data. Figure shows accuracy when using bagging in
an OVA classification method rather than with multi-class decision trees.

5.1 Results Using OVA Classification on Vehicle Dataset

Figure 3 compares using the rule ensemble and bagging on the vehicle dataset. Bagging here is used
in an OVA classification scheme rather than in its standard, direct multiple classification method.
The error at predicting any given label in the set is shown. As can be seen in Figure 3, the rule
ensemble beats bagging for the majority of the classes. Figure 3 also shows the varying level of suc-
cess that the ensemble techniques had at predicting each class. Some classes are easier to identify
than others (e.g. “opel” is easier to distinguish than van). Different ensembles were better suited
to one class versus another, and which ensemble was better for a class was not consistent for all
classes in a dataset.

5.2 Results Using OVA Classification on All Datasets

The results of the multiple class tests are given in Table 2. The rule ensemble is much stronger than
the tree ensembles if averaging of each tree’s label prediction is used for classification. However, if
the trees vote on which class label is best, then the rule ensemble is better on some datasets but
not others. Voting clearly was better at label prediction than averaging base learner predictions,
but neither boosting nor bagging provided a universal win over the rule ensemble, as can be seen
in Figure 4. What is not apparent in Table 2 is that the rule ensemble was a much better predictor
for binary labels than the tree ensembles. This result is apparent in Figure 3 where nearly every
individual class is better predicted by the rule ensemble method. Figure 5 shows the accuracy of
the rule ensemble method with different coefficient solvers. Some datasets are easier to classify
(larger percent of data correctly classified) while others, such as the #2 dataset glass, were more
difficult to classify for all the methods.
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Rule Ensemble Bagging Boosting
Name # Classes Pathbuild Fpc SPGL1 Voting Average Voting Average

breast-w 2 4.34 4.60 4.75 3.51 5.97 3.34 10.93
glass 7 37.99 33.47 35.26 26.92 39.16 29.83 54.72
ion 2 9.97 10.43 9.23 7.01 13.44 7.01 24.49
iris 3 4.80 4.27 5.33 4.93 5.51 5.73 5.95
pendigits 10 6.94 5.65 6.10 1.23 7.05 0.87 25.68
phoneme 2 14.97 14.33 14.16 12.06 16.97 10.81 26.61
pima 2 24.45 25.76 24.56 23.65 30.13 26.22 38.78
sonar 2 22.76 21.14 20.67 23.82 33.62 23.74 39.70
vehicle 4 28.35 26.69 27.63 26.24 34.05 25.18 46.36
waveform 3 15.50 15.79 16.03 15.67 26.30 16.61 35.26

Number of wins 1 1 1 3 0 5 0

Table 2: Error rate of the rule ensemble method compared with that of bagging and boosting.
Error rate is given as the percent of observations in the test set that were misclassified.

6 Binary Classification Results

6.1 Rule Ensemble with Pathbuild

Our implementation of the algorithm Pathbuild for approximating the rule coefficients in the rule
ensemble method is described in Figure 2. The coefficients are found by solving equation (5) with
a constrained gradient descent method. In this method, each iteration only advances in directions
where the components of the gradient have magnitude greater than some fraction τ ∈ [0, 1] of
the absolute value of the largest gradient component. Note that the set of directions we advance
in,

{k : |gk(X; a`)| ≥ τ ∗ ||gk(X; a`)||∞},

can change at every iteration. By not advancing in directions that have little change in the risk
function, the expense of updating coefficients for variables of little importance is avoided. Not
updating rules of little importance prevents the coefficient value for that rule from “stepping” off
zero, so that variable is effectively kept out of the model, allowing for a simpler model. Lower
values of τ should include more rules in the model. The most inclusive model is when τ = 0, which
is equivalent to using a basic gradient descent method to get a standard regression. Larger values
of τ decrease the total number of rules used in the model. The most constrained model occurs
when τ = 1.

Effect of Number of Rules and Tree Size

In Figure 6 we see how the size of the trees and the number of rules used for the model affect the
accuracy of the model. The decision trees are used to generate rules. Larger decision trees yield
more complex rules than small trees because large trees have nodes that are deeper. Nodes deep in
a tree capture subtle interactions within the training data since they depend on more splits and are
more complex than nodes that are closer to the root node. Figure 6 shows that ensembles built with
larger trees have higher error rates than ensembles that use smaller trees. The increase in error rate
when larger trees are built shows that when the model uses more complex rules, the model overfits
the training data. However, the size of the trees does not have a strong effect on the how large of an
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Figure 4: Comparison of the error rate from a model that was generated with the rule ensemble
method with the error rates from models that were generated with boosting and bagging ensemble
methods. Results are summarized in Table 2.

error rate the rule ensemble has. Further, the accuracy of the rule ensemble is highly variable and
the variance increases when larger trees are built. Ensembles built with trees that average 40 leaves
had 4-7% error, which is a large range when one considers that the mean classification error is only
about 5.5%. This error is larger than and has more variance than the error when trees with an av-
erage of 5 leaves are built, which is 3-4.2% error. It is not clear why there is so much variance in the
error rate in general. One should recall that the average number of terminal nodes in the decision
trees are exponentially distributed, only the mean of the distribution is changed, so there is a variety
of sizes of trees in each ensemble and complexity between rules in each ensemble. Because there is
a variety of tree sizes there is some stability in the error rate as the mean size of the trees is changed.

The bottom of Figure 6 also shows that using more rules can decrease the mean error rate of the
rule ensemble method as well as the variance in the error rate. Increasing the number of rules built
from 100 to 600 allowed the ensemble to capture more behavior and, as a result, nearly halved the
error rate of the method. However, the error rate only decreases down to a certain point, after
which adding more rules does not improve the model. For our data set, the error decreases to under
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Figure 5: Comparison of the error rate on 10 different datasets from models that were built with
the rule ensemble method using different solvers are used to find the coefficients a.

5.0% when 600 rules are built, but does not continue to decrease substantially when more than 600
rules are used. We also see that the error rates between ensembles that are built on more rules
have less variance than the error rates from ensembles that are built out of fewer rules. This result
is reasonable, as having more rules gives the ensemble a better chance of finding good rules that
successfully separate the data into classes.

In the initial tree building phase, a subsample of data is selected and a tree is grown on each
random subsample. Our initial experiments took subsamples of 2,500 observations (25% of the
total number of observations in the training set). When we decreased the subsample size to 500
observations (10% of training set), error rates did not significantly change even for a variety of
tree sizes that had between 5 and 80 terminal nodes. The lack of significant difference indicates
that 500 observations give us a large enough sample to catch the same amount of behavior that is
captured when larger subsamples of data are used to build each tree.

Effect of Using Rules Versus Linear Terms
In Figure 7 we see the effect of allowing the model to have linear dependencies on individual features.
If only linear terms are used, then the model is a standard multiple linear regression. Allowing the
model to be built with both linear terms and the rules generated by the trees yields a mixed model.
Using rules for the regression terms provides a clear advantage over the standard regression model
by reducing the error rate from nearly 30% error to less than 5%. The linear regression is also more
biased in its error than the rule ensemble. This bias can be seen by the false negative rate being
close to zero; this means nearly all the error is caused by mislabeling observations with negative
labels. We would not expect a linear regression to capture any of the complex nonlinear behavior
in the dataset, and the error rates show that such an conjecture is correct – rules are needed to get
significant predictive capability.

Effect of Using the τ Threshold as Penalty
The variable τ controls how many directions are updated at each iteration of Pathbuild in the
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Figure 6: The figure at the top shows that growing large trees (complex rules) increases the error
rate. The bottom figure was made by growing trees with an average of 50 terminal nodes and shows
that ensembles that have more rules have lower error rates. Tests were run with 500 maximum
rules in each model. The τ tolerance was 0.5. Asterisks indicate the mean error rate from multiple
tests.

14



0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

E
rr

o
r 

ra
te

Supernova Data − Accuracy with different modeltypes 

 

 

rules features rules & features

over all error

false positive

false negative

Figure 7: Using rules in an ensemble was six times more accurate than only using linear terms, a
classical multiple linear regression of the labels on the attribute variables. Linear regression was
not reliable for predicting the labels, but using the rule ensemble allowed for only 5% error in
prediction. This experiment was run using Pathbuild to solve for coefficients.

thresholded gradient descent method. The results of increasing τ are shown in Figure 8. The model
becomes less accurate and the variance of the error rate increases, as τ increases. An increase in
τ causes a higher threshold that results in fewer terms being included in each iteration of the
coefficient finding method and a ensemble model that is less accurate. It is interesting to note
that within a certain range, decreasing τ further does not offer much increase in the predictive
capability of the model. In this example, we see that when τ is between 0 and 0.3 there isn’t a
large increase in error rate. This indicates that using a weaker threshold of τ = 0.3 or even τ = 0.4
will not significantly compromise the accuracy of our model. This is a good result, as using a larger
threshold decreases the computational expense of each iteration of the gradient descent method.
The result that τ = 0.3 produces similar error rates to using τ = 0 means that we can get the same
accuracy with less computation.

6.2 Rule Ensemble with Glmnet

In this experiment we use the Glmnet package [13], which returns approximations to solutions of
elastic-net regularized general linear models, to solve for the coefficients a within the rule ensemble
method. Glmnet approximates a solution to the least squared error regression subject to an elastic
net penalty, which is

min
a∈Rn

1

N
||Xa− y||2 + λPα(a), (10)

with a coordinate-wise gradient descent method [13]. The elastic net is defined as

Pα(x) = α||a||1 + (1− α)||a||22

for α ∈ [0, 1]. When α = 0 the problem is referred to as ridge regression, and when we set α = 1
we get the same problem as in equation (6). The coordinate-wise gradient descent method starts
with the null solution, similar to Pathbuild, then cycles over the coefficients and uses partial
residuals and a soft-thresholding operator to update each coefficient one by one [12]. Glmnet
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Figure 8: Error rate increases as τ increases and restricts the number of coordinates the algorithm
advances in at each iteration. This experiment was run with each tree having an average of 20
terminal nodes and 600 maximum rules.

has some modifications that also allow some parameters to be associated with and updated at the
same time as neighboring parameters. The null solution corresponds to solving equation (10) with
λ = ∞. As the coefficients are updated, λ is decreased exponentially until the lower bound λmin,
the desired and pre-specified penalty weight, is met. Glmnet calculates a set of coefficients along
each increment of the path λ = ∞ to λ = λmin and uses the previous solution as a “warm start”
to approximate the next solution. Note that λmin should be small enough to prevent the penalty
from being so large that it causes the vector to be overly sparse. However, λmin should also be
positive and large enough to ensure a sparse solution that is robust to the training data. A robust
solution includes terms for interactions that are inherent to the application generating the data, not
interactions that are only figments the subset selected for training. It is not clear how to pick the
penalty weight λ to maintain sparsity of the solution and prevent overfitting while also capturing
enough characteristics of the dataset.

Here we use the rules generated in the previous experiment with Glmnet and build models using
the coefficients that are generated at each step of the path λ ∈ [λmin,∞]. Figure 9 shows how the
accuracy of the method changes as the weight of the penalty used to find the coefficients changes.
The solution with Glmnet when λ is small results in slightly less error than the solution with
Pathbuild when τ is small. The variance in the error rates from solutions found with Pathbuild
is less than the variance of error rates from solutions found with Glmnet. Both solutions yield
false positive rates that are more than twice as large as the false negative rates; this is probably
a result of the ratio of positive to negative observations in the test set is small. The error rate
slowly decreases as λ decreases, but then the error rate stabilizes when λ is very small, < 0.01. It
is interesting that the variance in error rates of the solutions is relatively constant as λ changes.
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Figure 9: Error rate decreases when Glmnet is used to solve for the coefficients and the constraint
parameter λ decreases.

6.3 Rule Ensemble with Spgl1

In this experiment, we used the Spgl1 (sparse projected-gradient l1) MatlabTMpackage [27] to
solve for the coefficients a in

min ||Xa− y||2 subject to ||a||1 <= σ. (11)

At each iteration of the algorithm, a convex optimization problem is constructed, whose solution
yields derivative information that can be used by a Newton-based root-finding algorithm [28]. Each
iteration of the Spgl1 method has an outer/inner iteration structure, where each outer iteration
first computes an approximation to σ. The inner iteration then uses a spectral gradient-projection
method to approximately minimize a least-squares problem with an explicit one-norm constraint
specified by σ. Some advantages of the Spgl1 method are that only matrix-vector operations are
required and numerical experience has shown that it scales well to large problems.

The results using Spgl1 are shown in Figure 10. The accuracy of the Spgl1 solution increases
when σ increases. The error rates are similar to those found by Pathbuild and Glmnet, but
slightly higher than Glmnet even when σ is large.

6.4 Rule Ensemble with Fpc

In this experiment, we used a fixed point continuation method (Fpc) [17] that approximates the
solution a in

min
a∈Rn

||a||1 +
µ

2
∗ ||Xa− y||22. (12)

This problem formulation seeks to minimize the weighted sum of the norm of the coefficients and
the error of the solution, the left and right terms respectively. The sparsity of a is controlled by the
size of the weighting parameter µ. Increasing µ places more importance on minimizing the error,
and reduces the ratio of the penalty to the error. The reduction of penalty importance allows more
coefficients to become non-zero (the `1 norm of the coefficients to increase) and thus find a closer
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Figure 10: Error rate decreases when Spgl1 is used to solve for the coefficients and the constraint
parameter σ increases.

fit to the problem. Equation (12) is simply a reformulation of problem (6) with the lasso penalty,
and is referred to as a basis pursuit problem in signal processing. The relation of the two problems
can clearly be seen if, for any λ value, µ is chosen to be

µ =
2

Nλ

and equation (12) is multiplied by λ. Fpc was developed for compressing signals by extracting the
central components of the signal.

Fpc exploits the properties of the l2 norm and declares three equivalent conditions for reaching an
optimal solution. Fpc uses the reformulations of the optimality conditions to declare a shrinkage
operator sν , where ν is a shrinkage parameter that has both an effect on the speed of convergence
and how many non-zero entries a∗ has. The operator sν acts on a supplied initial value a0 (which
we chose to be the null solution) and finds our solution a∗ through a fixed point iteration

a∗ = sν(a∗).

The given condition for the threshold of sν is

if ν − |y| > 0 then sν(y)→ 0.

Fpc forms a path of solutions that starts with µ initialized to µ = η
||Xty||∞ (where η is a ratio of

possible optimal square error at the next step to the square error at the current step). The param-
eter µ is altered at each step, which forces the shrinkage parameter to expand and contract but
the upper bound for µ is supplied by the user. All results presented here use Fpc with projected
gradient steps and optionally using a variant of Barzilai-Borwein steps [2].

The results of solutions generated by Fpc are shown in Figure 11. They are roughly as accurate as
the solutions generated with the previous solvers. Fpc also has an explicit display of the thresh-
olding as seen in Figure 13; the norm of the coefficients increases dramatically then asymptotically
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Figure 11: Error rate decreases when Fpc is used and the weight on the risk or mean squared error
is increased (µ increased).

approaches a certain value. The asymptotic behavior is caused by the threshold constricting the
coefficients and essentially preventing another coefficient from stepping off of zero. The threshold-
ing is also seen in the error rate decreases as the weight on the mean squared error is increased,
but stabilizes once the training set is reasonably fit. The value of µ where the error stabilizes is
the value needed to build the model, but unfortunately it is not clear how to choose this value of
µ a priori. The need for a selection of the penalty parameter is one of the difficulties that Fpc,
Spgl1, and Glmnet have. Pathbuild shares a similar problem with the need to selection the
gradient descent constriction parameter τ .

6.5 Identifying Important Attributes Via Rule Importance

Figure 11 shows that the rule ensemble method is quite successful at correctly classifying observa-
tions when all of the attributes are used to generate rules and build the model. Attributes have
variable importance in the model and we suspect that not all of the 39 attributes in the full dataset
are needed to model and correctly predict class labels. We want to use the rule ensemble method
to select only the attributes that are important and save the expense of considering the other less
important variables.

The importance of a rule is indicated by the magnitude of the coefficient for that rule. The larger a
coefficient is in magnitude, the more important the corresponding rule is, since that rule will have a
larger contribution to the model. To sift out the most important attributes, we look at which rules
Fpc considered important at different values of µ. Rules are ordered by the magnitude of their
corresponding coefficient and the rules corresponding to the 20 largest (in magnitude) coefficients
are selected. An example of ordering the rules is in Table 3 where the 5 most important rules from
one test are ordered. This process is continued for 5 different repetitions of training and testing,
which yields 5 sets of 20 most important rules. The sets of rules are decomposed into sets of at-
tributes that are used to make up the rules in each set. Then we let the 5 repetitions vote on which
attributes are influential and keep only attributes that are in the set of important attributes for at
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Figure 12: There is little fluctuation in the overall error rate when Fpc is used on rules that were
built with different size trees. Only the mean of cross validation tests is plotted here for simplicity.
Little fluctuation implies that simpler rules, which come from smaller trees, can be used to build a
model without sacrificing predictive capability.
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Figure 13: Sparsity of solution is indicated by the number of coefficients not equal to zero. As µ
is increased, the solution becomes less penalized and more coefficients step off zero and allow more
terms to be included in the model. The sparsity of the solution stops decreasing when µ is large
and the penalty is relatively small compared to the emphasis on minimizing the risk or second term
in equation (12). Here 78% of the coefficients are trivial when µ = 0.19.
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least 3 out of the 5 repetitions. Figure 14 shows how many votes the highest ranking rules get and
indicates that certain rules are important in all solutions while others are considered important in
only some solutions. This set of attributes forms a smaller subset of the 39 attributes available in
the initial dataset. The subset of rules only contains attributes that are used in at least one of the
20 most important rules in at least 3 of the 5 repetitions.

The importance of a rule is indicated by the magnitude of the coefficient for that rule. The larger
a coefficient is in magnitude, the more important the corresponding rule is, as that rule will have a
larger contribution to the model. To sift out the most important attributes, we look at which rules
Fpc considered important at different values of µ. Rules are ordered by the magnitude of their
corresponding coefficient and if a rule is one of the top 20 most important in a solution generated
with a certain µ (13 values of µ we considered), then that rule receives a vote. An example of
ordering the rules is in Table 3 where the 5 most important rules from one test with a given µ are
ordered. Figure 14 shows for how many values of µ each rule was considered to be in the top 20
most important; this indicates that certain rules are important in solutions with all values of µ tried
while others are considered important only when certain µ are used. This process is continued for
5 different cross-validation sets, which yields 5 sets of rules that were in the top 20 most important
rules for at least one value of µ. The sets of rules are decomposed into sets of the attributes that
were used to make up the rules in each set. Then we let the 5 repetitions vote on which attributes
are needed to make the most influential rules and keep only the attributes that are in the set of
important attributes for at least 3 out of the 5 repetitions. This set of attributes forms a smaller
subset of the total attributes available in the initial dataset; it is the subset attributes that are used
in at least one of the most important rules in at least 3 of the 5 repetitions.

For the supernova dataset, the smaller subset of attributes included only 21 of the 39 original at-
tributes. Tests were repeated using the same cross-validation sets and method parameters as were
used in Figure 11, but using only the smaller subset of 21 attributes to train on rather than all 39
attributes. Figure 15 compares the error rate of the method when 21 attributes were used with
the error rate of the method when all 39 attributes were used. The results show that the accuracy
of the method improves when we reduce the number of attributes used in the model. The method
successfully ranks rules and identifies more important attributes. The method loses accuracy when
the less important features are included; in essence, the extra attributes act as noise. After the
method identifies these attributes as less important and we remove them, the method is able to
return an even more accurate model and the insight of which attributes are not adding predictive
capability to the model. Garnering better accuracy with fewer attributes may allow the extra at-
tributes to be excluded from the data collection, which will save time in collecting data, save space
in storing data, and allow an overall better analysis.

7 Conclusions

We compared several variations of a rule ensemble method with some well-known tree ensemble
methods, namely boosting and bagging, on a variety of multi-class problems. We extended the rule
ensemble to work on multi-class problem by using the OVA technique and found that with this ex-
tension the rule ensemble method performed comparably to thetree methods on a set of 10classical
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Figure 14: This histogram shows how many times a rule was one of the top 20 most important rules
in a solution. A solution was generated at each of 13 different values of µ, as shown in Figure 11.
Rules that received 13 votes were one of 20 most influential rules for every value of µ tried. Only
rules that were in the top 20 most influential for at least one solution are shown. The attributes
that were used in the rules shown here were used to find a smaller subset of attributes to train on
for the results in Figure 15.

Rule rk |ak|
x2 ≥ -0.315 & x18 ≥ 0.047 0.1045

x29 <-0.251 0.0725
x23 ≥ -0.606 0.0317
x1 < -0.324 0.0274
x12 ≥ 0.260 0.0193

Table 3: Example of ordering rules by importance. These are the five rules with greatest importance
in the first model as selected by Fpc with µ = 0.25.
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Figure 15: Comparison of overall error rate when fewer attributes are used. The preliminary tests
used all 39 attributes in the dataset. The subsequent tests used only the subset of 21 attributes that
were used to construct the most important rules in the preliminary tests. Using the restricted set of
attributes gives a lower error rate indicating that the rule ensemble method successfully identified
which attributes are important in the dataset.

datasets. This result highlights the power of the rule ensemble method, as we had expected the
tree ensemble methods to do better on multi-class problems. Tree ensembles can use multi-class
decision trees, which provide what one would think is a more natural extension to multi-class prob-
lems than using the OVA method. However, the rule ensemble method returned comparable rates
of accuracy on most datasets and even performed better on some of the datasets. The discrepancy
between the tree ensembles with voting and the rule ensemble was larger on problems that had a
relatively large number of labels, such as the pendigits dataset, which had the most labels out of
all the datasets, than on datasets with fewer labels. To improve the accuracy of the rule ensemble
on problems with many classes, we would like to try using multi-class decision trees to build the
rules and then relabel the nodes for each binary problem. This technique might yield better rules
as it would allow for differentiation between the classes in the rule building phase. Better rules
would then allow for a clearer separation of binary labels in the regression phase. This technique
would also make the training phase more efficient as it would only require one set of rules to be
constructed rather the as many sets of rules as there are classes.

We also looked at using 4 different methods to find coefficients to assemble the rules. All 4 methods
present the challenge of needing to select a constraint parameter that controls the sparsity/accuracy
trade-off of the solution that they return. If each parameter is chosen correctly then the methods
are capable of producing coefficients that allow for similar accuracy in the model. The different
approaches that the methods take for finding the coefficients do result in slightly different rank-
ings of the rules. The difference in coefficients that each method considers important is shown in
Figure 16. Ideally all solvers would select the same terms to be the most significant and would
order the terms by importance the same way. Figure 16 shows that some rules that one method
considers important are not considered to be important to another method. Fpc and Spgl1 order
coefficients similarly, which is indicated by Spgl1 giving a significant magnitude to coefficients
that Fpc also gives a significant magnitude to. Glmnet’s and Pathbuild’s ordering share less
similarity with Fpc and Spgl1 as indicated by coefficients such as 9 and 18 that Glmnet and
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Figure 16: Length of bars indicate the magnitude of coefficients as calculated by different solvers.
Only the coefficients with the 10 largest magnitudes from each solver are displayed. Coefficients
plotted come from solutions that yielded similar error rates: τ = 0.4 , µ = .11, σ = 8.5, λ = 0.014.

Pathbuild give a significant magnitude to, but both Fpc and Spgl1 give trivial values to. The
difference in methods is also reflected in the sparsity of the solutions that they return. To achieve
similar accuracy (taken here at 96% accuracy) Pathbuild returns a solution with 40-50% of the
coefficients non-zero while the other methods return much sparser solutions that have only 12-19%
of the coefficients non-zero. In general, Spgl1 returned the sparsest solutions and Pathbuild
returned the least sparse solutions for models with similar error rates.

As a final step, we showed the utility of the rule ensemble method for identifying important at-
tributes in a dataset containing images of potential supernovas. The rule ensemble method has the
benefit over tree methods of providing insight into a dataset by returning weighted rules. Rules
with large weights have a larger effect on the model and thus can be thought of as more important
than other rules. We used the importance of such rules to alert us to the more significant features
in the dataset by looking at which features the important rules are defined on. This technique
allowed us to select 21 attributes out of the 39 available and reduce the error rate of the model by
building models only on the reduced set of attributes. Traditional algorithms that use ensembles of
decision trees, such as boosting and bagging, aren’t able to provide this insight into the importance
of certain variables of a dataset because they do not rank or weight of rules.

The rule ensemble method has the advantage over some other methods by being able to identify
relationships and hierarchies between variables to a certain extent when building the decision trees.
The rules in the decision trees get more complex the deeper the tree is grown and also are able to
have limited support in the parameter space, so they only affect certain observations that fall in that
space. By including more variables, complex rules can be seen as resembling discrete correlations,
and the post-processing of the rules allows for overly simplified correlations (that precede more
complex rules in depth) to be removed from the model. The post-processing also allows for overly
complex rules to be pruned from the model. Thus some variable interactions can be captured by
the rule ensemble method without any a priori assumption that they exist, as is needed in standard
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regression models, and excessive computation is not spent considering correlations that do not exist.

We do not compare the computational efficiency of the rule ensemble method with tree ensem-
blemethods here, since it is currently written in MatlabTM, while the tree ensemble methods used
are written in C. However, we do not expect that the rule ensemble method will reduce the amount
of time necessary for the training portion of the algorithm to run because it must perform the
coefficient solving method in addition to the tree growing. If the rule ensemble method is able to
prune a substantial number of repetitive or unnecessary rules, thenit is likely to run substantially
more quickly than the tree methods. Comparing the time efficiency of the rule ensemble with other
tree methods and other machine learning techniques will be part of future work. We do not present
the computationalefficiency of the coefficient solving methods used inthe rule ensemble method for
the same reason. Each solver is written in adifferent programming language, and each will have to
be implemented in the same language and level of optimization before a meaningful study can be
performed.
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Here we discuss the gradient method Pathbuild, which is described in section 3, in greater detail.
Simplifications of the gradient method are presented and considered as the “fast method”.

A Derivation of the Negative Gradient of Risk

The negative gradient g ∈ RK of the loss on the observations is found by taking partial derivatives
of the sum of the loss on each observation with respect to each coefficient. The components of the
negative gradient are given by

gk = − ∂

∂ak

1

N

N∑
i=1

L(yi, F (xi)), (13)

where k = 1, . . . ,K. Note that g0 = 0 as a0 is the constant intercept that minimizes the risk when
F (xi) = a0 and all the other coefficients have not moved off their initial zero value. {gk, k = 1..K}
are the non trivial components of the gradients.

∂

∂ak
L(yi, F (xi)) =

∂L(yi, F (xi))

∂F (xi)

∂F (xi)

∂ak
. (14)

Note that the second term is easily computed from the linear form of F (xi) and is given by

∂F (xi)

∂ak
= xik. (15)

A.1 Negative gradient squared error ramp loss is used

The previous discussion has been generalized for the use of any loss function L(·). Now consider
the case when the loss function is given by

L(yi, F (xi)) = [yi −H(F (xi))]
2

H(F (xi)) = max[−1,min(1, F (xi))],
(16)

which is the squared error ramp loss for the i-th observation. We want to find the derivative with
respect to a for this loss function. Begin by taking a partial derivative with respect to F

∂

∂F
L(yi, F (xi)) = −2(yi − F (xi)) I(|F (xi)| < 1). (17)

Substitute (15) and (DrampDF) into (14) to get the derivative for the squared error ramp loss

∂

∂ak
L(yi, F (xi)) = −2(yi − F (xi))xik I(|F (xi)| < 1). (18)

Using the form of F (xi) in the partial derivative (18) and then substituting into (13), we get the
gradient for the risk using the squared error ramp loss function

gk =
2

N

N∑
i=1

yi − a0 − K∑
j=1

aj xij

xik I(|F (xi)| < 1).
(19)
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Rearranging, switching the order of summation, and evaluating at the `-th step a` in the approxi-
mation of a we can write the gradient at the `-th step as

g`k =
2

N

N∑
i=1

yi xik I(|F `(xi)| < 1)

−a0
2

N

N∑
i=1

xik I(|F `(xi)| < 1)

−
K∑
j=1

a`j

[
2

N

N∑
i=1

xij xik I(|F `(xi)| < 1)

]
.

(20)

A.2 Negative gradient with auxiliary functions v, u

We need to keep track of the dependencies and update properly at each iteration. The goal of the
method is to update the coefficients a. We take a step with respect to a and then update everything,
so let a act as the independent variable. Recall that i is the index over the observations so xi is the
attribute values for the i-th observation and Fi is the predicted value for that observation. This
leaves us with

F `(xi) = a0 +

K∑
k=1

a`k xik = Fi(a
`).

Defining the indicators v`i
v`i = vi(a

`) = I(|Fi(a`)| < 1),

we can define a new function by

u`(p, q) = u(v`; p, q) =
2

N

N∑
i=1

pi qi v
`
i (21)

where p and q are scalars and v`i = I(|F `(xi)| < 1). Using the two functions v, u the negative
gradient at the `-th step (20) can be written in a simpler form

g`k = u`(v`; y, xk)− a0 u`(v`; 1, xk)−
K∑
j=1

a`j u
`(v`;xj , xk). (22)

B Fast Algorithm

To “step” we move proportional to the largest component of the negative gradient (13). Let g`j∗ be
the largest absolute component of the gradient

j∗ = arg max
1≤j≤K

|g`j |
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at the `-th step. Then call the length of the next step δ∗ = ∆ν g
`
j∗ and update the coefficients with

a`+1
j∗ = a`j∗ + δ∗. The coefficients at the (`+ 1)-th step are

a`+1 =

{
a`j , if j = 1..K, j 6= j∗

a`j∗ + δ∗ if j = j∗.
(23)

After a step the gradient must be recomputed before another step can be taken. Rather than fully
recomputing an update can be applied only to the components of the gradient that are affected by
the step. There are two cases of how the update to the gradient can be made. One update occurs
when the step in the coefficients has caused indicator functions to change; this update requires
more work and is expensive. The other update is cheap and is given as follows.

B.1 Case when indicators do not change

The step size ∆ν should be small; in practice it is taken to be 0.01. The idea is that with a small
stepsize |F (xi)| will not exceed 1 “often.” On the steps where this is true the indicators do not
change so v`, u(v`; y, xk), u(v`;xj , xk) do not change and the negative gradient at the (`+1)-th step
is found by substituting (23) into (22)

g`+1
k = u(v`; y, xk)− a0 u`(v`; 1, xk)−

K∑
j=1

a`j u(v`;xj , xk) −δ∗ u(v`;xj∗ , xk)

= g`k −δ∗ u(v`;xj∗ , xk).

(24)

B.2 Case when indicators change - adjustments

If the assumption fails and the indicators change on a step, then v` 6= v`+1 u`(v`) 6= u`+1(v`)
and (24) does not hold. To find g`+1, consider the cases of how v can change and and define the
variable

z`i =


−1, if v`i = 1 and v`+1

i = 0

0, if v`i = v`+1
i

+1, if v`i = 0 and v`+1
i = 1.

(25)

zn can be thought of adding in observations where the indicators have turned on and subtracting
observations where indicators have turned off. Using zn, u can be adjusted

u(v`+1; y, xk) = u(v`; y, xk) +
2

N

∑
zn 6=0

zn yn xnk

u(v`+1;xj , xk) = u(v`;xj , xk) +
2

N

∑
zn 6=0

zn xnj xnk

u(v`+1; 1, xk) = u`(v`; 1, xk) +
2

N

∑
zn 6=0

zn xnk

(26)
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and used with (23) and (19) to find the `-th update of the negative gradient

g`+1
k = u(v`+1; y, xk) −a0 u(v`+1; 1, xk) −

K∑
j=1

a`+1
j u(v`+1;xj , xk)

= u(v`; y, xk) −a0 u(v`; 1, xk) −
K∑
j=1

a`j u(v`+1;xj , xk)

+
2

N

∑
zn 6=0

znynxnk −a0
2

N

∑
zn 6=0

znxnk − δ∗ u(v`+1;xj∗ , xk)

(27)

With a little more rearrangement the update to the gradient as

g`+1
k = g`k adjust for obs. with changed I(|Fi| < 1)

+
2

N

∑
zn 6=0

znynxnk update ul(y, xk) from indicator change

−a0
2

N

∑
zn 6=0

znxnk update u(v`+1; 1, xk) from indicator change

−δ∗u(v`xj∗ , xk) step in j∗ direction

−δ∗
2

N

∑
zn 6=0

znxnj∗xnk terms not included in update due to old v`

− 2

N

K∑
j=1

a`j
∑
zn 6=0

znxnj∗xnk adjust for observations with changed I(|Fi| < 1).

(28)
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