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The Monthly problem #11515 asks to evaluate

o0
S(t) = > Amsin’(t/2").
n=1
Since the sum converges so rapidly, it is a simple matter to numerically
evaluate this function for various values of ¢, say using Mathematica or Maple.
For instance, we quickly found that S(7) = 72, correct to 100 digits. Further

experimentation yielded, within just a minute or two, the conjecture that S(t) =
T(t), where

T(t) = t?—sin’t.

This conjecture can be established as follows: First note that both S(¢) and
T'(t) satisfy the same recursion:

S(2t) —4S(t) = 4sin*t
T(2t) —4T(t) = 4sin’t.

The identity for the S function follows by noting that the RHS is merely the first
term of the summation for S(2t) (the remaining terms cancel). The identity for
the T function follows by simple trigonometry.

We now reason as follows. First of all, the identity S(0) = T°(0) is trivially
true. Now given some 6 # 0, we have, by the above identity,

S0)-T0) = S5(0/2) =T(0/2) = S5(0/4) —T(0/4) = 5(0/8) = T(0/8)---
= S(0)-T(0) =0,
by the continuity of the two functions S(t) and T'(t) at zero. The continuity of

S(t) at zero follows from the Weierstrass M-test, since on the interval [—1, 1] we
have |4™ sin*(t/2")| < 4™/16™ = 1/4", which is summable.
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We note in passing that the proof is greatly facilitated by our “knowing” the
result by prior experimentation. Indeed, the proof is very much in the spirit of
the Wilf-Zeilberger algorithm, which is discussed at length in [1].

References

[1] Marko Petkovsek, Herbert S. Wilf, Doron Zeilberger, A = B, AK Peters,
Natick, NH, 1996.



