
Numerical Results on the Transcendence of Constants
Involving �; e, and Euler's Constant

David H. Bailey
February 27, 1987

Ref: Mathematics of Computation, vol. 50, no. 181 (Jan. 1988), pg.
275{281

Abstract

Let x = (x1; x2; � � � ; xn) be a vector of real numbers. x is said to possess an integer
relation if there exist integers ai such that a1x1+a2x2+ � � �+anxn = 0. Recently Ferguson
and Forcade discovered practical algorithms [7, 8, 9] which, for any n, either �nd a relation
if one exists or else establish bounds within which no relation can exist. One obvious
application of these algorithms is to determine whether or not a given computed real
number satis�es any algebraic polynomial with integer coe�cients (where the sizes of the
coe�cients are within some bound).

The recursive form of the Ferguson-Forcade algorithm has been implemented with
multiprecision arithmetic on the Cray-2 supercomputer at NASA Ames Research Cen-
ter. The resulting computer program has been used to probe the question of whether
or not certain constants involving �; e, and
 satisfy any simple polynomials. These
computations established that the following constants cannot satisfy any algebraic equa-
tion of degree eight or less with integer coe�cients whose Euclidean norm is 109 or less:
e=�; e+ �; loge �;
; e

;
=e;
=�, and loge
. Stronger results were obtained in several
cases. These computations thus lend credence to the conjecture that each of the above
mathematical constants is transcendental.

The author is with the Numerical Aerodynamic Simulation Systems Division at NASA
Ames Research Center, Mo�ett Field, CA 94035.

1

Introduction

The problem of �nding integer relations among a set of real numbers goes back to
Euler, who showed that the Euclidean algorithm when applied to two real numbers either
terminates, yielding an exact relation, or else produces an in�nite sequence of approximate
relations. Hermite asked for generalizations for n > 2. Jacobi responded with an algorithm
that was subsequently modi�ed and developed by Perron, Bernstein, and others. Poincare
suggested an algorithm that was later re�ned by Brun. In the case where a relation does
exist, Brun's algorithm has been proven to terminate and produce a relation when n = 3.
However, none of these algorithms has been proven to work for n > 3, and numerous
counterexamples have been found. In the case where the entries of a vector x have no exact
integer relations, some of these algorithms provide a sequence of lattice approximations that
converges to the line between the origin and x in the angular sense, but none produces a
sequence that converges to the line in the absolute distance sense.

A breakthrough in this area occurred in 1979, when Ferguson and Forcade [7, 9] dis-
covered a recursive algorithm that is guaranteed to �nd an integer relation for any vector
x of any length n (if a relation exists). If the vector x does not satisfy an exact relation,
then this algorithm produces a sequence of lattice approximations that converges to the
line in the absolute distance sense (not just in the angular sense). Further, their algorithm
provides a means of establishing �rm lower bounds on the size of any possible relation.
More recently Ferguson [8] found non-recursive algorithms that also have these proper-
ties, although these non-recursive algorithms are signi�cantly more di�cult to state and
to implement on a computer.

These new algorithms have numerous possible applications, including factorization of
polynomials, study of \Gauss sums", analysis of possible relationships between the fun-
damental constants of physics, and the analysis of the cosmological stability of the solar
system. The most obvious application, however, is to determine whether or not a real num-
ber � whose value can be calculated on a computer is the root of any algebraic polynomial
with integer coe�cients. For this application it su�ces to apply one of these algorithms to
the (n+1)-long vector x = (1; �; �2; � � � ; �n). If a relation is found, then these integers are
the coe�cients of a polynomial satis�ed by the number �. Conversely, if a computation
establishes a bound within which no relations exist, then � cannot satisfy any algebraic
polynomial whose coe�cients are within this class. This method thus provides a compu-
tational technique for grasping the property of a number being algebraic.

A recursive form of the Ferguson-Forcade algorithm has been implemented by the au-
thor on the Cray-2 supercomputer operated by the NumericalAerodynamic Simulation Sys-
tem at NASAAmes Research Center. This program employs a package of high-performance
multiprecision arithmetic routines. It is necessary to use multiprecision arithmetic because
the Ferguson-Forcade algorithm requires an extraordinarily high level of numeric preci-
sion to probe for integer relations of higher degree. The computer run time requirement
is correspondingly high for seeking these high degree relations, but a number of useful
computations of this sort can be performed on a supercomputer such as the Cray-2.

The following constants were selected for analysis by the above procedure: e=�; e +

2

�; loge �;
; e

;
=e;
=�, and loge
. Note that �; e, and e� were not included because

these are known to be transcendental [3]. There are of course many other interesting
constants that could have been selected. It is hoped that some of these others can be
analyzed in the future.

The Ferguson-Forcade Algorithm

The following is a precise statement of the particular version of the algorithm that was
implemented for these applications. A full discussion of the mathematical theory behind
this algorithm may be found in [9]. Lower case symbols will be used to denote vectors of
real numbers and upper case symbols will be used to denote matrices of real numbers. The
norms of the vector x and the matrix A are de�ned as the Euclidean norms:

jxj =
sX

i

x2i

jAj =
sX

i;j

a2ij

The transpose of the row vector x and the matrix A will be denoted by xt and At, respec-
tively. Finally, In will be used to denote an identity matrix of size n� n.

Let x denote an n-long input vector of real numbers. To initialize the calculation set
P = xxtIn � xtx. In other words, Pij = �xixj if i 6= j, and Pjj =

P
i6=j x

2
i . Now set

x0 = x; P 0 = P , and A = In. Then perform the procedure ALG (n; x0; P 0; A), which is
de�ned below.

If ALG (n; x0; P 0; A) terminates, then the original row vector x, when multiplied on
the right by the inverse of the current A matrix, should yield one entry that is within
a reasonable tolerance of machine zero. The column of A�1 that produced this zero is
then the desired relation. If ALG (n; x0; P 0; A) completes but does not terminate, then any
possible integer relation r must satisfy jrj � jxj2=jAP j, where x and P are the initial arrays
and A is the current A matrix. This fact is proved in [9]. At this point the process may be
continued by performing ALG (n; x0; P 0; A) again, and repeating until either a legitimate
relation is discovered or else precision is exhausted. One can tell that precision has been
exhausted if the algorithm terminates with a matrix A, but no entry of xA�1 is su�ciently
close to machine zero.

The function of the procedure ALG (n; x; P;A) will now be described.

ALG (1; x; P;A): If x = 0 then terminate; otherwise set P = 0 and A = 1 and exit.

ALG (n; x; P;A) for n � 2: If some entry of x is zero (or within a reasonable tolerance of
machine zero), then terminate. Otherwise, perform the following steps:

1. Find a row of P with the smallest norm. Exchange this row with the last row of P , and
also exchange the corresponding rows of A and entries of x.

2. Construct the (n � 1) � (n � 1) matrix Q = uutIn�1 � utu, where the vector u =

3

(x1=xn; x2=xn; � � � ; xn�1=xn). Set u0 = u; Q0 = Q, and B = In�1. Then perform ALG
(n� 1; u0; Q0; B). If it terminates, then set c = 0. Otherwise repeat it until the condition

jBQW j <
juj2jvj
2
p
n + 1

is satis�ed. Here W denotes the (n� 1)� n matrix consisting of all rows of P except the
last, and v is the last row of P . When it is satis�ed, set c to the integer vector closest to
But=juj2.
3. Set

C =

"
B c
0 1

#

and replace x by xC�1, P by CP , and A by CA.
Actually, it is not necessary ever to invert the matrices A and C. The author's program

carries both A and A�1 through all steps of the above procedure. For initialization, both A
and A�1 are set to the identity. In the �rst step above, the columns of A�1 are exchanged
instead of the rows. In the third step, the matrix B�1 and the negative of c are used to
construct C�1, and �nally A�1 is replaced by A�1C�1.

There is something of a numeric di�culty in being able to clearly recognize a zero entry
in the �rst step above. The author found that it was satisfactory to examine the entries
for either being within twelve orders of magnitude of the \machine epsilon" (i.e., 10�6w,
where w is the number of words of precision used), or else being twenty orders of magnitude
smaller than the other nonzero entries. It is necessary to allow this last condition because
repeated constructions of the u vector from the x vector in the second step above can
renormalize these numbers far above machine epsilon.

Multiprecision Techniques

Unfortunately, a very high level of numeric precision is required to perform the Ferguson-
Forcade algorithm for values of n higher than three. In fact, the calculations reported
here employed either 6,144 or 12,288 digit precision. For this purpose a package of high-
performance multiprecision arithmetic routines was employed. These routines are similar
to the ones previously used by the author in a high-precision computation of � [1]. Sev-
eral improvements have been made in these routines since that computation, and these
di�erences will be summarized here.

The main di�erence between these computations and those described in [1] is that an
ordinary complex fast Fourier transform (FFT) is used here for multiplication instead of
dual prime modulus transforms. Although the complex FFT technique fails due to numeric
di�culties for very high precision (millions of digits), it runs approximately �ve times faster
than the prime modulus technique on the Cray-2 and thus is preferable for this application.
Another di�erence is that the radix of the multiprecision number representation is 106

4

instead of 107 as in [1]. This allows data to be split into two words containing three digits
each upon entry to the FFT multiply routine.

The FFT routine used in this program is currently the fastest software available to
perform a one-dimensional FFT on the Cray-2. Details of this FFT algorithm may be
found in [2]. Multiprecision multiplication is performed using this FFT as follows. Let
x = (x0; x1; � � � ; xn�1) and y = (y0; y1; � � � ; yn�1) denote the radix-b representations of two
multiprecision numbers. Extend x and y to length N = 2n by appending n zeroes to each.
Then the product z of x and y (except for releasing carrys) is merely the convolution

zk = Ck(x; y) =
N�1X
j=0

xjyk�j

where the subscript k � j is to be interpreted as k � j + N if negative. This convolution
is not evaluated directly but as

C(x; y) = F�1[F (x)F (y)]

where F and F�1 denote the discrete Fourier transform and its inverse:

Fk(x) =
N�1X
j=0

xje
�2�ijk=N

F�1
k (x) =

1

N

N�1X
j=0

xje
2�ijk=N

Since the input data x and y and the output data z are all purely real, a technique
described in [6] is used to reduce both the forward and reverse transforms to complex
transforms of one lower order, which dramatically reduces the run time.

Multiprecision division and square root extraction are performed using forms of New-
ton's iteration that require only multiplications, and thus they piggyback o� of the multiply
procedure described above.

It should be noted that it is not necessary to perform all operations of the Ferguson-
Forcade algorithm using high precision. For instance, the computation of matrix norms
can always be done in single precision, although the author found it necessary to man-
ually maintain the exponent, since otherwise even the very high dynamic range of the
Cray
oating-point format (102;466) occasionally over
ows. Also, in the early stages of the
algorithm, the A matrix in particular contains integers of only modest size, and a sim-
ple \schoolboy" multiplication procedure su�ces for operations involving these numbers.
The author's multiprecision multiply routine thus checks the number of nonzero words of
precision in the arguments and performs the FFT multiply algorithm only if the actual
precision of both arguments is above a certain level.

Algorithms for Computing the Constants

5

The constant � was computed using Borweins' quartically convergent algorithm, which
was discovered in 1985 [5]. This algorithm is as follows: Let a0 = 6�4

p
2 and y0 =

p
2�1.

Iterate

yk+1 =
1� (1 � y4k)

1=4

1 + (1� y4k)
1=4

ak+1 = ak(1 + yk+1)
4 � 22k+3yk+1(1 + yk+1 + y2k+1)

Then ak converges quartically to 1=�: each successive iteration approximately quadruples

the number of correct digits in the result.
Euler's constant
 was calculated using the following formulas, which are an improve-

ment of a technique previously used by Sweeney [10].

 =
2n

e2n

1X
m=0

2nm

(m+ 1)!

mX
t=0

1

t+ 1
� n log 2 + O(

1

2ne2n
)

log 2 =
1X
k=1

1

(2k � 1)32k�1

Unfortunately, this procedure exhibits only linear convergence. No quadratically conver-
gent algorithm is yet known for
. Nonetheless, it is feasible to compute
 to the precision
required for these calculations without expending too much computer time.

Exponentials and logarithms (and e itself) were computed using quadratically conver-
gent algorithms, which are also due to the Borweins [4]. The algorithm for computing et

is as follows.
First we need to de�ne the functions P (s) and Q(s). To de�ne P (s), set x0 = s and

y0 = 16=(1 � s2). Then iterate the following until convergence:

xk+1 =
2xk

xk + 1

yk+1 = yk

�
xk + 1

2

�21�k

The extraction of 2k-th roots in the last line is performed using Newton's iteration with a
level of precision that doubles at each step. P (s) is then de�ned as the limiting value of yk.
To de�ne Q(s), set a0 = 1; b0 = s; a00 = 1, and b00 =

p
1� s2. Then iterate the following

until convergence:

ak+1 =
ak + bk

2

bk+1 =
q
akbk

a0k+1 =
a0k + b0k

2

b0k+1 =
q
a0kb

0
k

6

Q(s) is de�ned as the ratio of the limits of a and a0. With P (s) and Q(s) de�ned, the
exponential function of t may be evaluated by using Newton iterations (with a variable
level of precision as before) to solve the equation Q(s) = t=� for s, and then evaluating
P (s). As a starting value for these Newton iterations, the author has found that a single
precision calculation of the following is satisfactory:

s0 =

8><
>:

0:0287621=p when p � 2:5
1 � e2:08�p when 2:5 < p � 30
100:434(2�p) when p > 30

where p = t=�. The natural logarithm of z can be obtained by using Newton iterations to
solve P (s) = z for s, and then evaluating �Q(s).

Numerical Results

Computer programs employing the above algorithms, including the multiprecision rou-
tines, have been implemented in the ANSI Fortran-77 language. The Fortran compiler
on the Cray-2 was able to automatically vectorize almost all loops in these codes. In the
few cases where loops are vectorizable but not automatically vectorized by the compiler,
vectorization was forced with directives. As a result, these programs run at nearly 100
million
oating-point operations per second on one processor of the four-processor Cray-2.
No attempt was made to utilize more than one processor. Most of these eight runs required
on the order of two hours of processing time. Normally it would have been very di�cult
to obtain this much computer time for such an application. However, in early 1987 the
Cray-2 and auxiliary equipment were moved to a new building, and before full production
usage resumed some extra time was available.

The results of these calculations are listed in the table 1. The precision �gures listed
are the number of decimal digits of precision used. The bounds listed are the minimum
Euclidean norm of the coe�cients of any possible degree eight polynomial that the given
constant could satisfy.

Acknowledgement

The author wishes to acknowledge the patient assistance of Prof. Helaman Ferguson in
suggesting this work and in explicating the details of his algorithm.

7

Constant Precision Bound
e=� 12,288 6:1030 � 1014

e+ � 12,288 2:2753 � 1018

log � 6,144 8:7697 � 1009

 6,144 3:5739 � 1009

e
 12,288 1:6176 � 1017

=e 6,144 1:8440 � 1011

=� 6,144 6:5403 � 1009

log
 6,144 2:6881 � 1010

Table 1: Lower Bounds for the Euclidean Norms of Degree Eight Polynomials

References

1. Bailey, D. H., \The Computation of � to 29,360,000 Decimal Digits Using Borweins'
Quartically Convergent Algorithm", preprint.

2. Bailey, D. H., \A High Performance Fast Fourier Transform Algorithm for the Cray-
2", Journal of Supercomputing, to appear March 1987.

3. Baker, A., Transcendental Number Theory, Cambridge University Press, London,
1975.

4. Borwein, J. M., and Borwein, P. B., \The Arithmetic-Geometric Mean and Fast
Computation of Elementary Functions", SIAM Review 26 (1984), p. 351-365.

5. Borwein, J. M., and Borwein, P. B., Pi and the AGM { A Study in Analytic Number

Theory and Computational Complexity, John Wiley, New York, 1987.

6. Brigham, E. O., The Fast Fourier Transform, Prentice-Hall, Englewood Cli�s, NJ,
1974.

7. Ferguson, H. R. P., and Forcade, R. W., \Generalization of the Euclidean Algorithm
for Real Numbers to All Dimensions Higher Than Two", Bulletin of the American

Mathematical Society, 1 (1979), p. 912-914.

8. Ferguson, H. R. P., \A Non-Inductive GL(n,Z) Algorithm That Constructs Linear
Relations for n Z-Linearly Dependent Real Numbers", Journal of Algorithms, to
appear.

9. Ferguson, H. R. P., \A Short Proof of the Existence of Vector Euclidean Algorithms",
Proceedings of the American Mathematical Society, Vol. 97, No. 1 (May 1986), p.
8-10.

8

10. Sweeney, D. W., \On the Computation of Euler's Constant", Mathematics of Com-

putation, 17 (1963), p. 170-178.

9

