
ANALYSIS OF PSLQ, AN INTEGER

RELATION FINDING ALGORITHM

Helaman R. P. Ferguson

David H. Bailey

Steve Arno

03 July 1997

Abstract. Let K be either the real, complex, or quaternion number system
and let O(K) be the corresponding integers. Let x = (x1, . . . , xn) be a vector
in Kn. The vector x has an integer relation if there exists a vector m =

(m1, . . . , mn) ∈ O(K)n, m �= 0, such that m1x1 +m2x2 + . . .+mnxn = 0. In
this paper we define the parameterized integer relation construction algorithm
PSLQ(τ), where the parameter τ can be freely chosen in a certain interval.

Beginning with an arbitrary vector x = (x1, . . . , xn) ∈ Kn, iterations of
PSLQ(τ) will produce lower bounds on the norm of any possible relation for x.
Thus PSLQ(τ) can be used to prove that there are no relations for x of norm

less than a given size. Let Mx be the smallest norm of any relation for x. For
the real and complex case and each fixed parameter τ in a certain interval,
we prove that PSLQ(τ) constructs a relation in less than O(n3 + n2 log Mx)

iterations.
Ref: Mathematics of Computation, to appear (1999)

Key words and phrases. Euclidean algorithm, integer relation finding algorithm, gauss-
ian integer, hamiltonian integer, polynomial time.

Typeset by AMS-TEX

1

1. Introduction

Let K be either the real, complex or quaternion number system and let
O(K) be the corresponding system of integers (i.e., ordinary integers, Gauss-
ian integers, or Hamiltonian integers, respectively). Let x = (x1, . . . , xn) be
a vector in K

n. The vector x has an integer relation if there exists a vector
m = (m1, . . . , mn) ∈ O(K)n, m �= 0, such that m1x1+m2x2+. . .+mnxn = 0.

In this paper we define the parameterized integer relation construction
algorithm PSLQ(τ), which, compared with other integer relation algorithms
in the literature, features superior performance and excellent numerical sta-
bility. The parameter τ can be freely chosen in the interval 1 < τ < ρ,
where ρ is 2 or

√
2 depending on whether K is the reals or complexes, re-

spectively; if K is the quaternions take τ and ρ to be 1. We analyze PSLQ(τ)
for these three number systems. We describe in detail some efficient Fortran
multiprecision computer implementations of PSLQ(τ).

Beginning with an arbitrary vector x = (x1, . . . , xn) ∈ K
n, a finite num-

ber of iterations of PSLQ(τ) will produce lower bounds on the (Frobenius)
norm of any possible relation for x. The computation of such a lower bound
constitutes a proof that x has no integer relations whatsoever of norm less
than this lower bound. Any finite computation done with PSLQ or any other
presently known relation finding algorithm can only prove that no small re-
lation exists. Such an algorithm can construct an alleged relation based on
inputs given to finite precision, but the proof that this alleged relation is a
true relation for the real numbers is a separate matter.

Let Mx be the smallest norm of a relation for x. Define γ by the equation
τ = 1/

√
1/ρ2 + 1/γ2, where ρ = 2 for the real number field and ρ =

√
2 for

the complex number field, and τ as above. For each fixed parameter τ in
the interval 1 < τ < ρ, we prove in the real and complex case that PSLQ(τ)
constructs a relation in less than

(
n
2

)
logτ

(
γn−1Mx

)
iterations. This shows

that PSLQ(τ) is ‘polynomial time’ in the dimension and the number of bits
of a smallest integer relation. Different τ or γ choices lead to different time
and space requirements for the algorithm.

For dimension n = 2 we prove that PSLQ(τ) will construct a relation of
smallest norm Mx. We give examples in dimension n = 3, for some τ , for
which PSLQ(τ) does not construct a relation of smallest norm Mx. However
for any dimension n ≥ 2, we do prove that any relation constructed by
PSLQ(τ) has norm less than or equal to γn−2Mx.

The ‘polynomial time’ and ‘small norm’ proofs given here are straight-
forward generalizations to the parameter τ and to the complex numbers of
the original ‘polynomial time’ proofs which appear in Lagarias et al, [23].

2

We show, however, that the algorithm of [23] is distinct from any of these
PSLQ(τ) algorithms.

PSLQ(τ) was introduced by the authors [2] in 1991. PS refers to partial
sums of squares, LQ to a lower trapezoidal orthogonal decomposition, and
(τ) is a parameter defined as above. Since PSLQ(τ) was introduced it has
been used to discover numerous previously unknown identities among real
numbers. One example is

∞∑
k=1

(
1 − 1

2
+ · · · + (−1)k+1

k

)2

(k + 1)−3

= 4L5(1/2) − 1
30

ln5(2) − 17
32

ζ(5) − 11
720

π4 ln(2)

+
7
4
ζ(3) ln2(2) +

1
18

π2 ln3(2) − 3
24

π2ζ(3),

where Ln(x) denotes the polylogarithm function
∑

k xkk−n. See [3] for de-
tails. Another example is the following formula for π:

π =
∞∑

i=0

1
16i

(4
8i + 1

− 2
8i + 4

− 1
8i + 5

− 1
8i + 6

)
.

This remarkable series permits one to rapidly compute individual digits
from the hexadecimal expansion of π. See [4] for details. It was found
by applying PSLQ(τ) to the vector X = (X1, X2, · · · , X8, π) where Xj =∑

k≥0 1/(16k(8k + j)). The smallest relation known,

(4, 0, 0,−2,−1,−1, 0, 0,−1),

yields the above ‘base 16’ formula for π. A next smallest relation known,

(0, 8, 4, 4, 0, 0,−1, 0,−2),

was subsequently discovered by Ferguson and this relation yields a similar
‘base 16’ formula for π. Together these two integral lattice relation vectors
generate a two-dimensional lattice of relations of this ‘base 16’ type. It is
conjectured there are no further such relations outside this lattice. Note that

(−8, 8, 4, 8, 2, 2,−1, 0, 0)

is in this lattice, so evidently X7 is integrally dependent upon X1, . . . , X6.
3

Of course, a numerical discovery of a relation using PSLQ(τ) does not
constitute a rigorous proof of the relation. However, in the wake of this
numerical evidence, proofs have subsequently been found for many of these
relations, including the above formula for π. See [3] and [4] for details.

In the theoretical proofs in Section 2, 3, 4, and 5, we will assume exact
arithmetic over the real numbers augmented by comparisons over the reals
and the nearest integer function.

2. Lower Bounds on Integer Relations

If K is the complex number field, then z� denotes the complex conjugate
of z, i.e. if z = x + iy, then z� = x − iy. | · | denotes the complex absolute
value, i.e. |z|2 = z�z = zz� = x2 + y2. If A is a matrix or vector, then A�

is the conjugate transpose of A. A unit in the complex number field is any
element z such that |z| = 1. For real z, the conjugate operation is null, and
z is the usual absolute value.

Similarly, if K is the quaternion number system, then z� denotes the
quaternion conjugate of z, i.e. if z = x+yi+uj+vk, then z� = x−yi−uj−vk.
The quaternion absolute value or norm is similarly defined, so that |z|2 =
zz� = z�z = x2 + y2 + u2 + v2. Units and conjugates of matrices are defined
analogously.

If K is any of the above three number systems, two vectors x, y ∈ K
n are

said to be orthogonal if xy� = 0. Let |A| = (tr(A�A))1/2 denote the Frobe-
nius norm of the matrix A, i.e., |A| =

(∑
a�

i,jai,j

)1/2. An n × n matrix A is
unitary if A�A = AA� = In. U(n, K) denotes the group of unitary matrices
over K. An n× n matrix A is unimodular if detA is a unit. GL(n, O(K)) is
the group of unimodular matrices with entries in the integers O(K).

Definition 1: (Mx). Assume x = (x1, . . . , xn) ∈ K
n has norm |x| = 1.

Define x⊥ to be the set of all vectors in K
n orthogonal to x. Let O(K)n ∩x⊥

be the discrete lattice of integral relations for x. Define Mx > 0 to be the
smallest norm of any relation for x in this lattice.

Definition 2: (Hx). Assume x = (x1, . . . , xn) ∈ K
n has norm |x| = 1.

Furthermore, suppose that no coordinate entry of x is zero, i.e., xj �= 0 for
1 ≤ j ≤ n (otherwise x has an immediate and obvious integral relation). For
1 ≤ j ≤ n define the partial sums

s2
j =

∑
j≤k≤n

xkx�
k.

4

Given such a unit vector x define the n × (n − 1) lower trapezoidal matrix
Hx = (hi,j) by

hi,j =

0 if 1 ≤ i < j ≤ n − 1
si+1/si if 1 ≤ i = j ≤ n − 1
−x�

i xj/(sjsj+1) if 1 ≤ j < i ≤ n.

Note that hi,j is scale invariant.

Lemma 1. Let Hx be the lower trapezoidal matrix defined above. Then
(i) H�

xHx = In−1, i.e., the columns of Hx are orthogonal,
(ii) |Hx| =

√
n − 1,

(iii) xHx = 0.

Proof. The columns can be proven orthogonal by considering the cases i = j
and i < j separately. When i = j the inner product is

s2
i+1

s2
i

+
∑

i<k≤n

xix
�
i xkx�

k

s2
i s

2
i+1

=
s2

i+1

s2
i

+
xix

�
i

s2
i s

2
i+1

∑
i<k≤n

xkx�
k

=
s2

i − xix
�
i

s2
i

+
xix

�
i

s2
i

= 1.

When i < j the inner product is

−sj+1x
�
i xj

sjsisi+1
+

∑
j<k≤n

x�
i xjxkx�

k

sisi+1sjsj+1

= −sj+1x
�
i xj

sjsisi+1
+

x�
i xj

sisi+1sjsj+1

∑
j<k≤n

xkx�
k = 0.

Item (i) shows that H�
xHx = In−1 which has trace n − 1 so |Hx| =

√
n − 1.

To prove (iii), fix 1 ≤ j ≤ n − 1, then

∑
1≤k≤n

xkhk,j =
xjsj+1

sj
−

∑
j<k≤n

xkx�
kxj

sjsj+1
=

xjsj+1

sj
− xjs

2
j+1

sjsj+1
= 0. �

5

Lemma 2. For a unit vector x ∈ K
n define Px = HxH�

x. Then Px satisfies:
(i) P �

x = Px ,
(ii) Px = In − x�x ,
(iii) P 2

x = Px ,
(iv) |Px| =

√
n − 1,

(v) Pxz� = z� for any z ∈ x⊥

(vi) Pxm� = m� for any relation m ∈ O(K)n for x.

Proof. Item (i) follows from HxH�
x = (HxH�

x)�. To prove (ii) note that
from Lemma 1 (iii), Hx is an n × (n − 1) rank n − 1 matrix whose columns
transposed form an orthonormal basis for x⊥. Defining U = (Hx|x�), an
n×n unitary matrix, we have UU� = HxH�

x + x�x = In. To prove (iii) note
that

P 2
x = (In − x�x)2 = I2

n − 2Inx�x + x�(xx�)x = Px.

To prove (iv) note that |Px|2 = tr(P �
x Px) = trPx = trH�

xHx = n − 1. Item
(vi) follows from (v) which follows from (ii) and the associativity (x�x)z� =
x�(xz�). �

Theorem 1. Let x �= 0 ∈ K
n. Suppose that for any relation m of x and

for any matrix A ∈ GL(n, O(K)) there exists a unitary matrix Q ∈ U(n− 1)
such that H = AHxQ is lower trapezoidal and all of the diagonal elements
of H, hj,j �= 0. Then

1
max1≤j≤n−1 |hj,j | = min

1≤j≤n−1

1
|hj,j | ≤ |m|.

Proof. Let m be any relation for x. By the hypothesis, there exists a uni-
tary matrix Q ∈ U(n − 1) such that H = AHxQ is lower trapezoidal (this
is equivalent to QR factorization). There is an n × n − 1 matrix T with
diagonal ones and an n − 1 × n − 1 diagonal matrix D where H = TD with
diagonal entries hj,j �= 0, 1 ≤ j ≤ n − 1 from the hypothesis. On the other
hand, APx = HQ�H�

x , from the definition of Px in Lemma 2. The equation
APx = TDQ�H�

x gives a decomposition of APx into the product of a lower
trapezoidal matrix T with diagonal 1’s, an invertible diagonal matrix D with
diagonal h’s, and an n − 1 × n matrix Q�H�

x with orthonormal rows since
Q�H�

xHxQ = Q�In−1Q = In−1 by Lemma 1. So the norm of the j-th row of
DQ�H�

x is |hj,j |.
From Lemma 2, part (vi), m� = Pxm�, so that Am� = APxm�. From

the above decomposition of APx = TDQ�H�
x , we have Am� = APxm� =

6

TD(Q�H�
x)m�. Let QH,j be the j-th row of Q�H�

x and let Aj be the j-th
row of A. Then

Ajm
� = hj,jQH,jm

� +
∑
k<j

tj,khk,kQH,km�.

Since A is invertible, Am� �= 0. Let j be the least j for which Ajm
� �= 0 so

that Akm� = 0 for k < j. Then the k < j rows of TDQ�H�
xm� are zero, and

since T is lower trapezoidal by recursion, the k-th rows of Q�H�
xm� are also

zero. With this least choice of j then Ajm
� = hj,jQjm

�. Therefore, from
A ∈ GL(n, O(K)),

1 ≤ |Ajm
�| ≤ |hj,jQH,jm

�| ≤ |hj,j ||m�|,

because QH,j is a unit vector. �

Comment on Theorem 1. Theorem 1 suggests a strategy to construct
a relation finding algorithm: Find a way to reduce the norm of the matrix
Hx by multiplication by some unimodular A on the left. The inequality
of Theorem 1 offers an increasing lower bound on the size of any possible
relation. Theorem 1 can be used with any algorithm that produces any
GL(n, O(K)) matrices. Any GL(n, O(K)) matrix A whatsoever can be put
into Theorem 1.

Definition 3: (Hermite reduction). Let H be a lower trapezoidal matrix,
with hi,j = 0 if j > i and hj,j �= 0. Define the matrix D = (di,j) ∈
GL(n, O(K)) recursively as follows. For fixed i, decrement j from n to 1,
setting

di,j =

0 if i < j

1 if i = j

nint((−∑
j<k≤i di,khk,j)/hj,j) if j < i,

We will say that DH is the Hermite reduction of H and we will say that
D is the reducing matrix of H. The function nint denotes a nearest integer
function, e.g., nint(t) = �t+1/2�. This definition of nint can be extended to
each coordinate for complex or quaternion arguments.

Definition 4: (Modified Hermite reduction). With the same notation
as in Definition 3, set D = In. For i from 2 to n, and for j from i − 1 to
1 (step -1), set q = nint(hi,j/hj,j); then for k from 1 to j replace hi,k by
hi,k − qhj,k, and for k from 1 to n replace di,k by di,k − qdj,k.

7

Lemma 3. For a lower triangular matrix H with hi,j = 0 if j > i and
hj,j �= 0, Hermite reduction is equivalent to modified Hermite reduction.

Comment. This variation can be found in [8] and later in [28]. This recursion
replaces the input H with DH while developing the left multiplying reduction
matrix D.

Lemma 4. There exists a constant ρK = ρ ≥ 1, with the property that
the entries of the Hermite reduced matrix H ′ =

(
h′

i,j

)
= DH satisfy the

inequality
|h′

k,i| ≤ |h′
i,i|/ρ = |hi,i|/ρ

for all k > i. The constant ρ = 2 for the real case, ρ =
√

2 for the complex
case, and ρ = 1 for the quaternion case.

Proof. This follows from the definitions of the nint function, Hermite reduc-
tion, and the fact that |z − nint(z)| ≤ √

dimR K/2 for z ∈ K. �

3. Statement of the Algorithm PSLQ(τ)

Definition 5: (The parameters γ and τ). Fix the real number γ > 2/
√

3
or γ >

√
2 or γ = ∞ for the real, complex, and quaternion cases respectively.

In terms of this γ, define the real number τ by

1/τ2 = 1/ρ2 + 1/γ2,

where ρ is defined as in Lemma 4. For the proof of Theorem 2, we will
require that 1 < τ and that τ ≤ ρ; clearly these conditions are satisfied in
the real and complex cases. In the quaternion case τ = 1 and ρ = 1.

For the proofs that follow assume K is real or complex, not quaternion.
Note however that the statement of the algorithm is valid for the quaternions.

Initial conditions: Given the input unit vector x ∈ K
n, set H = Hx where

Hx is defined as above. Set the n × n matrices A and B to the identity In.
Perform Hermite reduction on H, producing D ∈ GL(n, O(K)). Replace x
by xD−1, H by DH, A by DA, B by BD−1.

One four-step iteration:

Step 1: Exchange
Let H = (hi,j) where hi,j is the i-th row, j-th column entry of H. Let

α = hr,r, β = hr+1,r, λ = hr+1,r+1, δ =
√

ββ� + λλ�.
8

Choose an integer r such that γr|hr,r| ≥ γi|hi,i| for all 1 ≤ i ≤ n− 1. Define
the permutation matrix R to be the identity matrix with the r and r + 1
rows exchanged. Replace x by xR, H by RH, A by RA, and B by BR.

Step 2: Corner
At this point the updated matrix H may not be lower trapezoidal since

λ may not be zero. If r < n − 1 replace H by HQ where Q is the unitary
n − 1 × n − 1 matrix Q = (qi,j) ∈ U(n − 1, K) defined by

qi,j =

β�/δ if i = r, j = r

−λ/δ if i = r, j = r + 1
λ�/δ if i = r + 1, j = r

β/δ if i = r + 1, j = r + 1
1 if i = j �= r or i = j �= r + 1
0 otherwise.

where the α, β, λ, δ are defined in Step 1. If r = n− 1 then H is unchanged.

Step 3: Reduction
Perform Hermite reduction on H, producing D ∈ GL(n, O(K)). Replace

x by xD−1, H by DH, A by DA, B by BD−1.

Step 4: Termination
Terminate the algorithm if xj = 0 for some 1 ≤ j ≤ n or if hi,i = 0 for

some 1 ≤ i ≤ n − 1.

4. Number of Iterations of PSLQ(τ)

Let H(k) = H, A, and B = A−1 be the result after exactly k iterations
of PSLQ. Let α = hr,r(k) and β = hr+1,r(k). These definitions of α and β
are consonant with those of Step 2. Because H is Hermite reduced in Step
3, from Lemma 4, |β| < |α|/ρ. For r < n − 1 set λ = hr+1,r+1(k) and define
t by t =

√
ββ� + λλ�/|α|. From this definition of t we have

|λ| ≤ |α|t.

From the Step 1 Exchange, 0 ≤ |λ| ≤ |α|/γ. It follows that

t =
√

ββ� + λλ�/|α| ≤
√

1/ρ2 + 1/γ2 = τ,

as in Definition 5. For this proof we will require that t < 1 < τ , clearly
satisfied in the real and complex cases.

9

Lemma 5. If hj,j(k) = 0 for some 1 ≤ j ≤ n − 1 and no smaller k, then
j = n − 1 and a relation for x must appear as a column of the matrix B.

Proof. (Alyson Reeves) First we show that hj,j = 0 implies that j = n − 1.
Consider the matrix H(k − 1), the end result of the k − 1-th iteration. By
the hypothesis on k we know that no diagonal elements in H(k−1) are zero.
In particular, for the r about to be chosen in Step 1 of the k-th iteration, we
know that hr,r(k − 1) �= 0 and that hr+1,r+1(k − 1) �= 0. Now, suppose the
r chosen in Step 1 is not n − 1. Let(

α 0
β λ

)

be the submatrix of H(k − 1) consisting of the r and r + 1 rows of columns
r and r + 1. After Step 1 has been performed this submatrix becomes(

β λ
α 0

)
.

At Step 2, we post-multiply the matrix by the unitary sub-matrix of Q(
β�/δ −λ/δ
λ�/δ β/δ

)
,

where δ =
√

ββ� + λλ�. The result is the matrix(
δ 0

αβ�/δ −αλ/δ

)
.

Since λ and α are not zero (they were diagonal elements of H(k − 1)), we
know that δ and −αλ/δ, the two diagonal elements in the matrix, are also
not zero. Note that since the rest of Q is the identity matrix none of the
other diagonal elements is affected by the multiplication. Thus, at the end of
Step 2, all diagonal elements are non-zero. Since Hermite reduction doesn’t
introduce any new zeros on the diagonal, the end result of the k-th iteration
has all non-zero diagonal elements. But this contradicts the hypothesis on
k and our assumption that r < n − 1 was false. Note that for r = n − 1
in order to have hn−1,n−1(k) = 0, we must have hn,n−1(k − 1) = 0 and
hn−1,n−1(k − 1) �= 0.

Next we show that a relation for x must appear as a column of the matrix
B. By Lemma 1, xHx = 0. BA = In implies 0 = xBAHx = xBAHxQ =
xBH(k − 1), where Q is an appropriate unitary n − 1 × n − 1 matrix. Let
z = xB. The above gives

(0, . . . , 0) = xBH(k − 1) = zH(k − 1) = (. . . , zn−1hn−1,n−1(k − 1)).

Since hn−1,n−1(k − 1) �= 0 then zn−1 = 0. Hence the n − 1-th column of B
is a relation for x. �

10

Lemma 6. At any k-th iteration of the algorithm the diagonal entries of
H(k) satisfy the inequality |hi,i(k)| ≤ 1.

Proof. We follow the α, β, λ definitions of the proof of Lemma 5 and use
induction. For k = 1 the diagonal entries of H(k) are those of Hx and
sj+1 ≤ sj ≤ 1 gives the required inequality. Assume that the inequality also
holds up to k−1. The diagonal entries of H(k) are equal to those of H(k−1)
except for row r where Step 1 Exchange occurs. When r = n − 1, after the
exchange, the r-th diagonal element is β. But |β| ≤ |α|/ρ ≤ 1 because ρ > 1
and |α| ≤ 1 by induction. When r < n − 1, after the exchange the r-th
diagonal element is δ. But |δ| = |α|t ≤ 1 since t < 1 and |α| ≤ 1. The
r + 1-th diagonal element of H is −αλ/δ (as in the proof of Lemma 5) so
that | − αλ/δ| = |λ|/t ≤ |α| because |λ|2 < |λ|2 + |β|2 and |λ| ≤ |α|t. �

We show that every iteration of PSLQ causes a geometric monotonic in-
crease in a certain function Π(k) which is roughly the product of all the
principal minors of the matrix H(k). If a relation for x exists, this prod-
uct will be bounded above and below. Assume x has some relation and as
usual let Mx denote the norm of a smallest relation for x. We will need the
following technical lemma in the proof of Lemma 9.

Lemma 7. Consider the quotient

q(A,B, t) =
min{B, t} · min{A, 1}
min{B, 1} · min{A, t}

Suppose that the four positive real numbers A,B, 1, t satisfy the three inequal-
ities

A ≥ B, A ≥ t, 1 ≥ t.

Then,
q(A,B, t) ≥ 1.

Proof. Of the 16 possible choices in the min’s, the inequality A ≥ t removes
8, A ≥ B removes 2, and 1 ≥ t removes 1 leaving 5. These five are
A ≥ B ≥ 1 ≥ t with quotient t/1 · 1/t = 1,
A ≥ 1 ≥ B ≥ t with quotient t/B · 1/t ≥ t/1 · 1/t = 1,
1 ≥ A ≥ B ≥ t with quotient t/B · A/t = A/B ≥ 1,
1 ≥ A ≥ t ≥ B with quotient B/B · A/t = A/t ≥ 1,
A ≥ 1 ≥ t ≥ B with quotient B/B · 1/t = 1/t ≥ 1. �

11

Lemma 8. For α, γ, Mx as above,

γn−2Mx|α| ≥ 1.

Proof. By the choice of r in Step 1 Exchange, we have γr|α| ≥ γj |hj,j | for
any j, 1 ≤ j ≤ n − 1, which implies

γn−1/|hj,j | ≥ γr/|hj,j | ≥ γj/|α| ≥ γ1/|α|,

for all j including that jo for which Mx ≥ 1/|hjo,jo | from Theorem 1. Thus
γn−2Mx ≥ 1/|α| and γn−2Mx|α| ≥ 1 �

Definition 6: (The Π function). Recall τ =
√

1/ρ2 + 1/γ2. Define

Π(k) =
∏

1≤j≤n−1

min{γn−1Mx, 1/|hj,j(k)|}n−j .

Lemma 9. For any k > 1 we have
(i)

(γn−1Mx)(
n
2) ≥ Π(k) ≥ 1,

(ii)
Π(k) ≥ τΠ(k − 1).

Proof. For the k’s so far, hj,j(k) �= 0 for all 1 ≤ j ≤ n − 1. Mx ≥ 1 and
1/|hj,j(k)| ≥ 1 by Lemma 6. This gives

min{Mx, 1/|hj,j(k)|} ≥ 1,

for all 1 ≤ j ≤ n − 1, which implies the right hand inequality of (i). On
the other hand, it is always the case that Mx ≥ min{Mx, 1/|hj,j(k)|}, which
together with the fact that

(
n
2

)
= n − 1 + · · · + 2 + 1 and that γ ≥ 1 gives

the left hand inequality of (i).
The proof of part (ii) is more involved. Let r be given by the Step 1

Exchange of PSLQ. Recall the definitions of the two successive diagonal
elements α, λ, the single off diagonal element β, t =

√
ββ� + λλ�/|α| in the

Step 2 (Corner development) of the unitary matrix in terms of β and λ.
12

Suppose that r < n − 1. Then only two diagonal elements change. These
correspond to the 2 × 2 submatrix of H(

α 0
β λ

)

which after a single iteration becomes(
δ 0

αβ�/δ −αλ/δ

)
.

But |δ| = |α|t so that the absolute values of the of the α, λ diagonal elements
are replaced by the absolute values of the δ,−αλ/δ diagonal elements. All
the factors of Π(k) are the same except these two so that

Π(k)
Π(k − 1)

=
(

min{γn−1Mx, 1/(|α|t)}
min{γn−1Mx, 1/|α|}

)n−r

·
(

min{γn−1Mx, t/|λ|}
min{γn−1Mx, 1/|λ|}

)n−r−1

.

Set
A = γn−1Mx|α|t and B = γn−1Mx|λ|,

so that
Π(k)

Π(k − 1)
=

(
min{A, 1}
min{A, t}

)
·
(

min{B, t}
min{B, 1} · min{A, 1}

min{A, t}
)n−r−1

.

We now show that the assumptions for Lemma 7 hold. Note that 1 > t
by the definition of t; also, A ≥ B since |α|t ≥ |λ|. By Lemma 8 we have
A ≥ tγ ≥ t. By Lemma 7 we have

Π(k)
Π(k − 1)

≥ min{A, 1}
min{A, t} ≥ 1

t
≥ τ.

Now suppose that r = n − 1. By Step 3 Reduction, under one iteration
the absolute value of the last diagonal element α is less than |α|ρ. All the
factors of Π(k) except the last are the same so that

Π(k)
Π(k − 1)

≤ min{γn−1Mx, 1/(|α|ρ)}
min{γn−1Mx, 1/|α|} =

min{A, t/ρ}
min{A, t} .

But we always have γn−2Mx|α| ≥ 1, so if A ≥ t/ρ ≥ t

Π(k)
Π(k − 1)

≥ 1/ρ ≥ τ.

By Lemma 8, A ≥ tγ ≥ t. If t ≤ A ≤ t/ρ then
Π(k)

Π(k − 1)
≥ A/t ≥ γ ≥ τ.

Thus for r ≤ n − 1, Π(k) ≥ τΠ(k − 1). �

13

Theorem 2. Assume real or complex numbers, n ≥ 2, τ > 1, and that
0 �= x ∈ K

n has O(K) integer relations. Let Mx be the least norm of relations
for x. Then PSLQ(τ) will find some integer relation for x in no more than(

n

2

)
log

(
γn−1Mx

)
log τ

iterations.

Proof. Suppose we have done k iterations, then from Lemma 6 and Lemma
7, |hj,j(k)| �= 0 and not all |hj,j(l)| < 1/Mx for l < k. By Lemma 6, Π(0) ≥ 1
and by Lemma 7, Π(k) ≥ τk so that

(γn−1Mx)(
n
2) ≥ τk

Taking natural logarithms of both sides of this inequality gives(
n

2

)
log

(
γn−1Mx

) ≥ k log τ. �

Corollary 2. Let K be the real numbers R or the complex numbers C. Fix
n > 1 and assume given a unit n-tuple x ∈ K

n which has a relation mx ∈
O(K)n of least norm Mx. Then there exists a γ such that the algorithm
PSLQ(τ) will construct some O(K)n relation for x in no more than

2 · (dimR K) · (n3 + n2 log Mx)

iterations.

Proof. Let γ = 2. Then for either K, τ > 1, specifically, 1/ log τ < 4 dimR K.
PSLQ(τ) takes O(n) exact arithmetic operations per iteration, so in this
sense finds relations in ‘polynomial time’ O(n4 + n3 log Mx). �

5. Upper Bounds on Integer Relations

We compare the relation found by PSLQ to a shortest possible relation.

Lemma 10. Suppose m is the relation found on the k + 1-st iteration so
that hn−1,n−1(k + 1) = hn,n−1(k) = 0 and hn−1,n−1(k) �= 0. Then

|m| = 1/|hn−1,n−1(k)|.
Proof. At this iteration we have developed the matrix A ∈ GL(n, O(K))
where the (n−1)-st column of A−1 by Lemma 5 is m and the vector Am� =
en−1 has as its only non-zero entry a 1 in the (n − 1)-st position. Since
AP = TDQ, Qm� = D−1T †Am�, where T † is the generalized inverse of T
and D is a diagonal matrix with last entry hn−1,n−1(k), which is also the
last entry of D−1T †Am�. Because Q is unitary |Qm�| = |m�|. �

14

Theorem 3. Let Mx be the smallest possible norm of any relation for x.
Let m be any relation found by PSLQ(τ). For all γ >

√
4/3 for real vectors

and for all γ >
√

2 for complex vectors

|m| ≤ γn−2Mx.

Proof. Assume we are at the k-th step of PSLQ where a Step 1 Exchange
r = n − 1 was made with hn−1,n−1(k) �= 0 and hn−1,n−1(k + 1) = 0. Then

γn−1|hn−1,n−1(k)| ≥ γj |hj,j(k)|

for all 1 ≤ j ≤ n− 2 by the choice of r. Hence, by Theorem 1, Lemma 8 and
Lemma 10

Mx ≥ 1/max |hi,i(k)| ≥ γ2−n/|hn−1,n−1(k)| = γ2−n|m|. �

Comment on Theorem 3. For n = 2, Theorem 3 proves that any relation
0 �= m ∈ O(K2) found has norm |m| = Mx. In other words, PSLQ(τ) finds
a shortest relation. For real numbers this corresponds to the case of the
Euclidean algorithm, [13, Book X], [20], [26]. For complex numbers this
corresponds to the case of an algorithm in [33].

For n = 3, let x = (113, 343, 311). This vector has a shortest relation
mx = (7,−15, 14) with the shortest norm |mx| = Mx = 21.6794 This
can be verified directly, cf., [25], [31], [11]. On the other hand, for τ =
1.0000 . . . , γ = 1.1547 . . . , PSLQ(τ) in iteration 6 produces the relation
m1 = (24,−7,−1). Indeed

Mx < |m1| = 25.0199 . . . ≤ γMx = 25.0333

This relation appears from a zero in the second coordinate of the xA−1
6

vector. Continuing to iteration 8 gives the relations appearing from the first
and second coordinates of the current xA−1

8 vector, m2 = (−17,−8, 15) and
m3 = (41, 1,−16) of norms 24.0416 . . . and 44.0227 . . . , respectively. The
vector m2 has smaller but not smallest norm. Continuing to iterations 9
and 10 gives the relations appearing from the first and second coordinates of
xA−1

9 of m4 = (7,−15, 14) and m2 = (−17,−8, 15), so a shortest vector m4

was eventually found. In iteration 11 the h2,2(11) = 0 condition appeared for
the first time giving the relation m5 = (−10,−23, 29) of norm 38.3405

This example is instructive in that various choices of the parameter τ
give different outputs. The ‘legal’ τ are such that 1 < τ < 2, although the

15

PSLQ(τ) sometimes works for ‘illegal’ τ outside of this interval. For the
‘legal’ τ , τ = 1.1, iteration 6 yields m1, 8 yields m2,m3, 9 yields m4,m2,
and 10 yields m5. On the other hand, for τ = 1.8, iterations 4, 5, 6 all yield
only the shortest length relation m4. For the ‘illegal’ τ below 0.7 and above
2.1 the algorithm cycles indefinitely. The end point τ = 1.0 gives essentially
the same outputs as τ = 1.1. The other end point τ = 2.0 yields two new
relations m6 = (1,−91, 100) and m7 = (0,−311, 343) of norms 135.2109 . . .
and 463.0010 . . . , respectively.

6. Multiple Relations.

A given unit vector x ∈ K
n may have 0, 1, 2, or up to n − 1 relations.

Once a relation has been constructed, one of the coordinates of xB for the
appropriate B ∈ GL(n, O(K)) will be zero, and the corresponding column of
B will be a relation. The remaining n − 1 coordinates can be used to form
a new unit vector in y ∈ K

n. Apply PSLQ(τ) to this y. Any second relation
so found will be integrally independent from the first and can be referred
back to the original x. In this way as many as n − 1 integrally independent
relations for x can be constructed. We omit here the tangent discussion of
using classical lattice reduction techniques to find integer relations; this is
the case for the Recognize[] function in MathematicaTM which calls the
function LatticeReduce[], cf., [11], [12], [27]. Lattice reduction there applies
typically only to integer relations for integer vectors. Integer relation finding
here is directed specifically at integer or Gaussian integer relations for real
or complex number vectors.

7. Variations of PSLQ(τ).

The algorithm PSLQ(τ) as stated may be performed for various ‘illegal’
τ or ‘illegal’ γ, and under these circumstances will find relations for some x
vectors. This can happen for γ <

√
4/3 in the real case, for γ <

√
2 in the

complex case, and for γ < ∞ in the quaternion case, so that τ < 1 and the
conclusions of Theorem 2 or Theorem 3 make no sense or have no apparent
content. The reason for this apparent anomaly is that for a specific n-tuple x
the actual field or division ring constant ρ bound in Lemma 4 is not universal
and could depend upon an input vector x. Say ρx gives a bound such as that
of Lemma 4 for some special x or collection of them. Then there may be an
“illegal” γ so that τx = 1/

√
1/ρ2 + 1/γ2 > 1. For such x one could expect

to see some relation emerge before the number of iterations indicated by
Theorem 2 for this τx = τ .

On the other hand, it is possible to use the real PSLQ(τ) algorithm to find
16

complex and quaternion relations at the expense of doubling and quadrupling
the dimension. For example, suppose z = x + yi + uj + vk is a vector in H

n

with vector components x, y, u, v ∈ R
n. Suppose the corresponding relation

is m = a + bi + cj + dk which is a lattice point in W
n with integral vector

components a, b, c, d ∈ Z
n. Then zm� = 0 implies four integer relations

among the interlaced and suitably sign changed coordinates of z. For the
first set

∑
1≤j≤n(ajxj − bjyj − cjuj − djvj) = 0 and one can apply real

PSLQ(τ) to the real 4n-tuple (. . . , xj , yj , uj , vj , . . .). There are three others
which are similar. A relation for z will be in the intersection of the four
associated lattices. Alternatively, one can give a PSLQ(τ) algorithm along
the lines of [23, Section 5. Finding simultaneous integer relations].

8. Computer Implementation of PSLQ(τ)

The PSLQ(τ) algorithm can be implemented using ordinary floating point
arithmetic on a computer. Using double precision (i.e., 64-bit) arithmetic,
relations of two or three digits in size can be recovered for n up to five or
so. Beyond this level, precision is quickly exhausted, and recovered relations
and norm bounds are meaningless. Thus a serious implementation of PSLQ
(or any other integer relation algorithm for real numbers) must employ some
form of multiprecision arithmetic. The authors employed the MPFUN mul-
tiprecision translator and computation package. The Fortran-77 version of
this software is described in [6], and the newer Fortran-90 version is described
in [7]. A C++ translator that employs these routines is also now available.
Alternatively, one may employ the multiprecision facilities of symbolic math
software packages, such as Maple, Pari or MathematicaTM .

The descriptions presented here of computer implementation of PSLQ(τ)
are for the case of the real number system. Extensions to the case of the
complex and quaternions number systems are straightforward, provided one’s
multiprecision system supports these datatypes.

One key to an efficient implementation is to utilize a simplified version of
Hermite reduction and the associated update. As noted in Lemma 3 above,
Hermite reduction can be done more efficiently by a triply nested loop. In
fact, the update operations associated with Hermite reduction (updating
x,H,A and B) can also be done in a loop of this form. Further, if these
updates are done in this manner, then it is not necessary to compute the D
matrix. This simplified scheme is as follows. In the initialization step, Her-
mite reduction and the subsequent updates are replaced with the following:

For i from 2 to n, for j from i − 1 to 1 (step -1), set t = nint(hi,j/hj,j) and
replace xj by xj − txi; then for k from 1 to j replace hi,k by hi,k − thj,k; for

17

k from 1 to n replace ai,k by ai,k − taj,k and replace bk,j by b(k, j) + tb(k, i).

Step 3 is also replaced with this, except i is incremented from r+1 to n, and
j is decremented from min{i − 1, r + 1} to 1. Here r denotes the row index
selected in Step 1. These more restrictive limits on i and j merely reflect the
fact that t = 0 outside these limits.

Obviously in a computer implementation some care must be taken in
testing for zero. This is typically done by checking that the absolute value of
the tested value is less than the “epsilon” appropriate for the level of numeric
precision being used. Also, a run should be terminated if any entry of the
A matrix exceeds the level of numeric precision being used (so that these
integer values can no longer be represented exactly).

The level of working precision required for PSLQ is generally only a few
digits greater than the accuracy of the input x vector. Along this line, if
one wants to recover (or to exclude) relations of size d digits, then the input
data must be specified to at least nd digits in order to obtain numerically
meaningful results. The significance of a recovered result can be measured by
noting the ratio between the multiprecision epsilon and the largest entry of
the updated x vector when a relation is recovered. If this ratio is very small,
such as 10−40, then one can be fairly certain that the relation produced by
PSLQ is a real relation. But if this ratio is only a few orders of magnitude
below unity, then the result is suspect, and higher accuracy in the input
data, as well as correspondingly higher working precision, is required.

The above implementation is satisfactory for most applications. For more
demanding applications, a “two-level” implementation is significantly faster.
In a two-level implementation, most operations are performed in ordinary
double precision arithmetic, with occasional updates of multiprecision arrays
using multiprecision arithmetic. This two-level scheme can be described as
follows. Here the prime notation is used to denote double precision approx-
imations to multiple precision values.

To initialize, perform the initialization step as described above using full
precision. Then perform a “double precision initialization”: (1) set x′ =
x/maxi,j |xj | and set H ′ = H; (2) perform a LQ decomposition on H ′, using
double precision arithmetic, setting H ′ to be the lower triangular part; (3)
set A′ = B′ = In.

PSLQ iterations are then performed as above on the arrays x′, H ′, A′

and B′, using double precision arithmetic. Some care must be taken to
insure numerical accuracy in these iterations. Obviously these iterations
before entries in A′ grow so large (9 × 1015 on IEEE systems) that they
cannot be exactly represented as double precision values. In the authors’

18

implementation, double precision iterations are halted when the largest entry
of A′ exceeds 1010. Tests for zero in these iterations must reflect the accuracy
of double precision arithmetic — the authors used an “epsilon” of 10−13

here. As an additional measure to insure numerical integrity, the authors’
code aborts the modified Hermite reduction procedure (and restores arrays
to their previous values) if the multiplier q exceeds 107.

When the double precision iterations are halted, either due to large entries
in A′, or to a tentative zero in x′ or H ′, it is necessary to perform a “mul-
tiprecision update”: (1) replace A by A′A, replace B by BB′, replace H by
A′H, and replace x by xB′; (2) check for zero entries in x, using the multi-
precision epsilon. If no zeroes are found, then a double precision initialization
is performed, followed by more double precision PSLQ iterations.

One detail has been omitted here. In some cases, the entries of the up-
dated x vector have such a large dynamic range (greater than 1010 in the
authors’ implementation) that when converted to double precision, additions
and subtractions would produce results of questionable reliability. In these
cases it is necessary to perform PSLQ iterations on the multiprecision ar-
rays, using multiprecision arithmetic, for a number of iterations until this
large dynamic range is eliminated. If this situation is encountered on any
iteration other than the very first, a multiprecision LQ decomposition of H
must be performed prior to performing these multiprecision iterations (so
that the H array contains the same entries as the H array defined in the
PSLQ algorithm statement).

The authors’ Fortran implementation of PSLQ, together with the required
multiprecision arithmetic software, is available by sending electronic mail to
dbailey@nas.nasa.gov. Also available are MathematicaTM implementa-
tions of PSLQ as well as a number of other integer relation algorithms for
comparison.

9. Summary of the Literature

The problem of finding integer relations among sets of rational and real
numbers is quite old. When n = 2 this problem can be solved for rationals
by the first Euclidean algorithm in Euclid, Book VII, and for reals by the
second Euclidean algorithm given in Euclid, Book X, cf., [26], [11], [37].
Generalizations of this algorithm to higher real dimensions were proposed
without proof by many authors, including Jacobi [24], Hermite [22], Poincaré
[32], Perron [30], Brun [9, 10] and Szekeres [38]. Various counterexamples
can be found in [15] and [19].

The first integer relation finding algorithm with proofs for the case of real
numbers was discovered in 1977 by Ferguson and Forcade, [14, 15]. These

19

algorithms were shown to be polynomial time in the logarithm of the size of
a smallest relation. They were not shown to be polynomial in the dimension.
Since then, other related algorithms for finding relations for real vectors
have appeared in [8], [16], [17], [18]. For example, [5] reports on a computer
implementation of [16]. The sequence including [23] (HJLS), [2] and [1]
(PSLQ), [3] (a concise statement of PSLQ), and [35] (a stable variation of
HJLS) will be discussed below.

These algorithms all depend upon an orthogonal decomposition of some
kind. See [21], for a list of various orthogonalization algorithms and their
numerical linear algebra differences. PSLQ is of the QR type. HJLS follows
the lattice reduction work of [28], [34], and [36], which is classical Gram-
Schmidt type, cf. [31] and [11]. This conceptual difference may explain some
of the numerical differences observed between PSLQ and HJLS, cf. [2].

Rigorous proofs that the algorithm under investigation must find a relation
if one exists appeared in [14, 8, 15, 16]. All of these proofs gave a linear bound
in the logarithm of the size of a relation, but were not known to be polynomial
in the dimension. [8] and [16] had unsatisfactory proofs in the sense that
they were shown to be at worst exponential in the dimension rather than
polynomial in the dimension. This unsatisfactory state of affairs was resolved
affirmatively with the proofs that appeared in [23] for the ‘small integer
relation algorithm’. We will refer to this ‘small integer relation algorithm’
as HJLS, as stated in [23, Section 3] as a reflection of that in [8, Section
3]. In fact, this proof in [23] was the first appearance in the literature of a
‘polynomial time’ bound for a relation finding algorithm, polynomial in both
dimension and logarithm of relation size.

This important progress was made when [23] combined two independent
streams of research, [14, 8, 15, 16, 18] and [28, 29, 34, 35, 11]. Inspired
by the polynomial result of [23], but not the details, the first author of this
paper formulated what he thought was a new algorithm [2, 1] and gave a
polynomial proof. This proof was independent of that of [23], a different
analysis, but flawed by giving a slightly higher degree polynomial in the
dimension than the polynomial proof given in [23]. This algorithm in [2, 1]
was called PSLQ and had the advantage of the adjustable parameter γ or
τ . Applications and implementation of this earlier version of PSLQ(τ) were
described in [3, 7, 4]. These implementations showed that the parameters
were a helpful feature of the algorithm. The bound on iterations for HJLS
proven in [23] was O(n3 + n2 log2 Mx); this is consonant with the bound
proven in this paper for PSLQ(

√
2). The subsequent paper [35] included

parameters as well as addressing a certain issue of stability.
As a specific example, consider the triple x = (11, 27, 31). We list the

20

sequence of A−1 matrices for each algorithm. A relation if found will be
constructed as a column of one of these A−1 matrices.

For PSLQ(1.1547) the successive iterations k = 0, 1, 2, 3, 4, yield the five
A−1 matrices

 1 0 0
0 1 0
0 −1 1

 ,

 1 0 0

3 8 1
−3 −7 −1

 ,

−2 1 0

2 3 1
−1 −3 −1

 ,

 3 −2 0

1 2 1
−2 −1 −1

 ,

−1 −8 −2

5 9 2
−4 −5 −1

 .

Note that PSLQ has constructed two relations appearing as the first and
second columns of the last matrix, iteration k = 4.

For HJLS the successive iterations k = 0, 1, 2, 3, 4, 5, 6 yield the seven A−1

matrices
 1 0 0

0 1 0
0 0 1

 ,

 1 0 0

0 0 1
0 1 −1

 ,

 0 1 0

0 0 1
1 0 −1

 ,

 1 −2 0

0 0 1
0 1 −1

 ,

 1 0 −2

0 1 2
0 −1 −1

 ,

 0 1 −2

1 3 2
−1 −3 −1

 ,

 0 −2 −1

1 2 5
−1 −1 −4

 .

Note that only one relation is found; it appears in the last column of the last
matrix, iteration k = 6. The authors of [34] claimed that HJLS is a special
case of PSLQ(τ) for γ =

√
2 or equivalently τ =

√
4/3. The example just

given shows that this claim cannot be true.
The significance of the parameter was revealed clearly in the extensive

tables appearing in [2]. In [2] the parameter was γ which is equivalent to
giving τ = 1/

√
ρ2 + 1/γ2. The choice of the parameter τ has precision

consequences: depending upon the choice of parameter a numerical precision
much higher than that of the input real vector must be used to obtain a
reliable result. For example, the algebraic number

α = 31/4 − 21/4 =
√√

3 −
√√

2

satisfies a polynomial of degree 16 with coefficients

(1, 0, 0, 0,−3860, 0, 0, 0,−666, 0, 0, 0,−20, 0, 0, 0, 1).
21

The algorithm PSLQ(τ) for τ = 1.000006145 or γ = 1.1547005384, applied
to the vector (1, α, α2, · · · , αn−1), with n = 17, finds these coefficients with
a working precision of 75 decimal digits. We have shown with the n = 3
example above that HJLS is not PSLQ(

√
4/3). Again, we see that HJLS

requires a working precision of more than 10, 000 decimal digits to find this
n = 17 relation. Comparative run times are not particularly relevant here
but are also correspondingly higher for HJLS — see Table 2 of [2].

For a slightly different τ =
√

4/3 = 1.154700538 . . . , PSLQ(τ) requires
85 decimal digits, 10 digits more than for γ = 1.1547005384. Generally
the closer τ is to 1 the less precision seems to be required. This observed
phenomenon appears to have nothing to do with any question of numerical
stability.

The various algorithms in the literature stand independently of their pub-
lished proofs; their published proofs may not reveal their actual properties
clearly. Though the proofs were exponential, the algorithms stated in [14],
and in [15], and again in [16] were parametric. The parameter b in [14, 15]
satisfies 1 < b < 2 whereas in [16] the parameter γ is emphasized. The al-
gorithm in [8, Sect. x] seems closest to PSLQ(

√
4/3) with the τ parameter

set by γ =
√

2. This parameter choice appears in [8, Sect. x] without the
[28] setting and reappears in [23] as the “small integer relation algorithm”,
which we call HJLS, rewritten in the [28] language and accompanied by a
‘polynomial time’ proof for the first time.

Bergman discussed the complex case of finding gaussian integer relations
for complex vectors in [8, Sect. 5: Variants]. Bergman also gave an algorithm
for the simultaneous real vector case in [8, Sect. 7]. Following Bergman, the
paper defining HJLS for simultaneous real vectors, [23, cf., Sect. 5], implic-
itly includes the complex and quaternion vector case as well. As an alternate
approach, inspired by [37], in this paper we have extended the base field of
PSLQ(τ) to these division rings and introduced unitary matrices into the
algorithm directly. The proof given here of polynomial number of iterations
covers the real and complex cases, but fails for quaternions. However, the
quaternion version of PSLQ(τ) performs reasonably well experimentally in
finding hamiltonian integer relations for quaternion vectors. This was ex-
plained in Section 8.

10. Open Questions

1) Is there a relation finding algorithm that finds a shortest relation in a
polynomial (in the dimension) number of iterations?

2) What are the best choices for the parameter τ or γ relative to the
22

number of iterations, time, and precision requirements of PSLQ?

23

11. Acknowledgments

The authors thank (in alphabetical order) Peter Borwein, M. Euchner,
Rod Forcade, Jeff Lagarias, Alyson Reeves, Robert Riley, M. L. Robinson,
Carsten Rössner, Claus Schnorr, and Francis Sullivan for their motivating
comments about PSLQ. Specifically, we thank Alyson Reeves for her lucid
rewriting of the proof of Lemma 5, Rodney Forcade for counterexamples,
and the referee for clarifications.

References

1. Steve Arno and Helaman Ferguson, A new polynomial time algorithm for finding
relations among real numbers, Supercomputing Research Center Tech Report SRC-

93-093 (March 1993), 1–13.

2. D. H. Bailey and H. R. P. Ferguson, A polynomial time, numerically stable integer

relation algorithm, SRC Technical Report SRC-TR-92-066; RNR Technical Report
RNR-91-032 (16 December 1991; 14 July 1992), 1–14.

3. D. H. Bailey, J. Borwein, and R. Girgensohn, Experimental evaluation of Euler sums,

Experimental Mathematics 3 (October 1994), 17 – 30.

4. D. H. Bailey, P. Borwein, and S. Plouffe, On the rapid computation of various poly-
logarithmic constants, Mathematics of Computation 66 (April 1997), no. 218, 903 –

913.

5. D. H. Bailey, Numerical results on the transcendence of constants involving π, e, and
Euler’s constant, Mathematics of Computation 50 (January 1988), no. 181, 275 – 281.

6. D. H. Bailey, Multiprecision translation and execution of Fortran programs, ACM
Transactions on Mathematical Software 19 (1993), no. 3, 288 – 319.

7. D. H. Bailey, A Fortran-90 based multiprecision system, ACM Transactions on Math-
ematical Software 21 (1995), no. 4, 379 – 387..

8. G. Bergman, Notes on Ferguson and Forcade’s generalized Euclidean algorithm, Uni-

versity of California at Berkeley, unpublished notes, Nov. 1980..

9. V. Brun, En generalisatiken av kjedebroøken, I, II, Norske Videnskapsselskapets Skrifter
I. Matematisk Naturvidenskapelig Klasse 6 (1919, 1920), 1-29, 1-24.

10. V. Brun, Algorithmes euclidiens pour trois et quatre nombres, tenu a Helsinki 18–23
août 1957, Treizième congrès des mathematiciens scandinaves (1958), 46 – 64.

11. H. Cohen, A Course in Computational Algebraic Number Theory, Graduate Texts in

Mathematics 138, Springer-Verlag, Berlin Heidelberg New York, 1993.

12. M. J. Coster, A. Joux, B. A. LaMacchia, A. M. Odlyzko, C. P. Schnorr, J. Stern,

Improved low-density subset sum algorithms, Computational Complexity (1992-3).

13. Euclid, translated from the text of Heiberg with introduction and commentary by Sir
Thomas L. Heath, The Thirteen Books of Euclid’s Elements, Second Edition, revised

with additions, unabridged, Volumes I, II, III, Dover Publications, Inc., New York,
1956.

14. H. R. P. Ferguson and R. W. Forcade, Generalization of the Euclidean algorithm for

real numbers to all dimensions higher than two, Bulletin (New Series) of the American
Mathematical Society 1 (1979), 912 – 914.

15. H. R. P. Ferguson and R. W. Forcade, Multidimensional Euclidean algorithms, (Crelle’s)

Journal für die reine und angewandte Mathematik 334 (1982), 171 – 181.

24

16. Helaman Ferguson, A short proof of the existence of vector Euclidean algorithms,

Proceedings of the American Mathematical Society 97 (May 1986), no. 1, 8 – 10.

17. Helaman Ferguson, A non-inductive GL(n, Z) algorithm that constructs integral linear
relations for n Z-linearly dependent real numbers, Journal of Algorithms (1987), no. 8,

131 – 145.

18. Helaman Ferguson, PSOS: A new integral relation finding algorithm involving partial

sums of squares and no square roots, Abstracts of the American Mathematical Society
9 (March 1988), no. 56; 88T-11-75, 214.

19. Rodney W. Forcade, Brun’s algorithm, unpublished manuscript (November 1981), 1

– 27.

20. David Fowler, Ratio in early Greek mathematics, Bulletin (New Series) of the Amer-
ican Mathematical Society 1 (November 1979), no. 6, 807 – 846.

21. G. H. Golub and C. F. Van Loan, Matrix Computations, 2nd Edition, The Johns
Hopkins University Press, Baltimore, Maryland, 1990.

22. C. Hermite, Extraits de lettres de M. Ch. Hermite à M. Jacobi sur differénts objets de
la théorie de nombres, (Crelle’s) Journal für die reine und Angewandte Mathematik
(1850), no. 3, 4, 261 – 315.

23. J. Hastad, B. Just, J. C. Lagarias, and C. P. Schnorr, Polynomial time algorithms for
finding integer relations among real numbers, SIAM Journal of Computing 18 (1989),

859 – 881.

24. C. G. J. Jacobi, Allgemeine Theorie der Kettenbruchahnlichen Algorithmen, in welchen
jede Zahl aus drei vorhergehenden gebildet wird (Aus den hinterlassenen Papieren von

C. G. J. Jacobi mitgetheilt durch Herrn E. Heine.), Journal für die reine und Ange-
wandte Mathematik 69 (1868), no. 1, 29 – 64.

25. R. Kannan, Lattices, basis reduction, and the shortest vector problem, Colloquia Math-

ematica Societatis János Bolyai, Theory of Algorithms, Pécs, (Hungary) 44 (1984),
283-311.

26. D. E. Knuth, The Art of Computer Programming, Vol. 2 Seminumerical Algorithms,
Second Edition, Addison-Wesley, Reading, MA, 1981.

27. J. C. Lagarias, H. W. Lenstra Jr., and C. P. Schnorr, Korkin-Zolotarev bases and

successive minima of a lattice and its reciprocal lattice, Combinatorica 10 (1990),
no. 4, 333 – 348.

28. A. K. Lenstra, H. W. Lenstra Jr., and L. Lovasz, Factoring polynomials with rational

coefficients, Math. Ann. (1982), no. 21, 515 – 534.

29. Laszlo Lovasz and Herbert E. Scarf, The generalized basis reduction algorithm, Math-

ematics of Operations Research 17 (August 1992), no. 3, 751 – 764.

30. O. Perron, Grundlagen für eine Theorie des Jacobischen Kettenbruchalgorithmus,
Math. Ann. (1907), no. 64, 1 – 76.

31. M. Pohst and H. Zassenhaus, Algorithmic Algebraic Number Theory, Chapter 3:
Methods from the Geometry of Numbers, Encyclopedia of Mathematics and its Appli-

cations, Cambridge University Press, New York, 1989, pp. xiv, 465.

32. H. Poincaré, Sur une Généralisation des fractions continues, Comptes Rendus Acad.
Sci. Paris 99 (1884), 1014 – 1016.

33. Asmus L. Schmidt, Diophantine approximation of complex numbers, Acta Mathemat-
ica 134 (1975), 1 – 85.

34. M. Euchner and C. Schnorr, Lattice basis reduction: improved practical algorithms

and solving subset sum problems, Proceedings of the FCT’91 (July 1991), 1-21.

25

35. C. Rössner and C. P. Schnorr, A stable integer relation algorithm, FB Mathematik/

Informatik Universität Frankfurt TR-94-016 (1994), 1 – 11.
36. C. P. Schnorr, A more efficient algorithm for lattice basis reduction, Journal of Algo-

rithms 9 (1988), 47 – 62.

37. G. Shimura, Fractional and trigonometric expressions for matrices, The American
Mathematical Monthly 101 (October 1994), no. 8, 744 – 758.

38. G. Szekeres, Multidimensional continued fractions, Ann. Univ. Sci. Budapest Eötvös

Sect. Math. XIII (1970), 113 – 140.

Helaman Ferguson and Steve Arno: Center for Computing Sciences, 17100

Science Drive, Bowie, MD 20715-4300 helamanf@super.org and arno@super.org;

David H. Bailey: NASA Ames Research Center, Mail Stop T27A-1, Moffett

Field, CA 94035-1000 dbailey@nas.nasa.gov

26

