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Abstract

Many traditional algorithms for computing the fast Fourier transform (FFT) on con-
ventional computers are unacceptable for advanced vector and parallel computers because
they involve nonunit, power-of-two memory strides. This paper presents a practical tech-
nique for computing the fast Fourier transform that completely avoids all such strides and
appears to be near-optimal for a variety of current vector and parallel computers. Perfor-
mance results of a program based on this technique are presented. Notable among these
results is that a Fortran implementation of this algorithm on the Cray-2 runs up to 77%
faster than Cray's assembly-coded library routine.

The author is with the Numerical Aerodynamic Simulation (NAS) Systems Division at
NASA Ames Research Center, Mo�ett Field, CA 94035.
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Introduction

As a result of the proliferation of advanced vector and parallel scienti�c computers,
many traditionally used numeric computation algorithms are being reconsidered. Issues
that previously were very important, such as conserving memory, are no longer signi�cant,
and other issues have come to the fore. One issue that is increasingly important for a wide
range of new systems is memory access patterns, especially the memory stride (i.e., the
increment in memory between successive elements in a vector fetch or store operation).

For a highly parallel, distributed memory system such as a hypercube, data locality is a
very important issue. Even though such systems are designed for e�cient communication
of data between processors, it is still highly advantageous to be able to perform as much
computation as possible locally within one processor-memory node. This means that unit
stride memory accesses are optimal | larger strides increase the frequency that data must
be accessed that resides on other processors. Uniprocessor systems with cached memories,
such as the Convex C1 and the IBM 3090 VF, have a similar problem. On these systems,
large strides increase the frequency of cache hits, which result in signi�cantly decreased
performance. Again, the optimal stride for memory accesses is one.

In vector supercomputers with large interleaved shared memories (such as Crays), large
strides are not disadvantageous per se, but strides divisible by large powers of two result
in extremely serious performance reductions due to memory bank con
icts. Because of the
interleaved design of the memory banks, a vector fetch or store with unit stride operates
at full speed, since each word resides on a di�erent bank. However, vector fetches or stores
with strides divisible by large powers of two su�er serious slowdowns, since each word
resides on the same bank. On the Cray-2, strides divisible by 256 can result in slowdowns
of more than a factor of 40.

In other systems, such as the CDC Cyber 205 and the recently introduced ETA-10,
most hardware instructions are designed for unit stride memory access. Access of data
with strides other than one requires the usage of gather-scatter instructions and as a result
does not fully tap the potential performance of the machine.

This paper describes a technique for evaluating one-dimensional power-of-two FFT that
completely avoids power-of-two memory strides. In addition, this algorithm features the
following:

� All fetches and stores of the main data arrays in the inner loop are performed with
unit stride.

� In the �rst few iterations, roots of unity are fetched in inner loops, but these fetches
have unit stride.

� After the �rst few iterations, all roots of unity are fetched in the outer loop.

� The minimum length of inner loops can be adjusted to be at least the natural vector
length for the machine being used, or up to the square root of the size of the transform.
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� A power-of-two matrix transposition is required after the �rst few iterations, but this
step can be performed without any power-of-two memory strides.

� An ordered transform is produced; no bit-reversal permutation is necessary.

Strides in FFT Algorithms

Unfortunately, by far the most popular FFT is the power-of-two FFT, and virtually
all machine implementations of this FFT require numerous memory accesses with large
power-of-two memory strides. For example, a commonly used algorithm for evaluating
power-of-two FFTs is the following, which is known as the standard Stockham formulation
of the FFT. Let n = 2m, and let �t = e�2�i=p, where p = 2t. Then iterate the following
calculations for t from 1 to m:

Y (j2t + k) = X(j2t�1 + k) + �k
tX(j2t�1 + n=2 + k)

Y (j2t + 2t�1 + k) = X(j2t�1 + k)� �k
tX(j2t�1 + n=2 + k)

0 � j < 2m�t 0 � k < 2t�1

In the above formulas,X is the input array and Y is the output array for each iteration, and
these formulas imply that data be copied from Y to X before the next iteration. However,
in practice iterations are performed from X to Y and then from Y to X so that copying is
not necessary. Actually, in older implementations of FFTs, memory space is usually saved
by overwriting the results into the same array, rather than using a separate array for the
results on the left-hand side. If this is done, the resulting data will not be stored in the
proper locations, and a \bit-reversal" permutation of the �nal results will be necessary.

Many implementations of the FFT also precalculate the powers of � in a one-time
initialization before the FFT is called with any data. Typically these powers are placed
in an array U such that U(k) = �k

m; 0 � k < n=2. Then the expression �k
t is evaluated

by merely recalling U(k2m�t) from memory. The most common procedure to perform one
iteration of the FFT above is to increment j in the inner loop and to increment k in the
outer loop. For many computers this ordering of the loops is faster because the fetch of
the power of � from U may be done in the outer loop, since it does not depend on j.

On most new systems, however, each of the above-mentioned techniques for evaluating
the FFT is inappropriate. Saving memory by not using a scratch array, at the cost of
a bit-reversal permutation, is ridiculous on systems such as the Cray-2, which has over
268 million 64-bit words of main memory. Likewise, evaluating the above formulas with
j incremented in the inner loop is extremely unwise on many new vector and parallel
computers, because virtually all accesses of the X and Y arrays will employ large power-
of-two memory strides, especially in the later iterations. And even the practice of fetching
powers of �t as described above results in power-of-two memory strides.
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Previous Solutions to the Power-of-Two Stride Problem

A number of solutions have been proposed to the problem of power-of-two memory
strides in FFTs. One solution is to simply avoid using power-of-two FFTs, in favor of
radix-3 or radix-5 FFTs. Unfortunately, most applications of the FFT are not easily
converted to using mixed radix FFTs. In some cases, the usage of a power-of-two FFT is
inherent in the nature of the application and cannot be changed at any cost. And even
where it is possible to convert an application to use mixed-radix FFTs, the programming
cost of such a conversion is often prohibitive. Hockney and Jesshope [3] suggest using
spacers in data to avoid power-of-two strides, but again this is not a practical solution to
the problem for most applications.

Many applications of the FFT require two-dimensional or three-dimensional FFTs.
Such FFTs can easily be performed with stride one memory accesses by merely coding a
one-dimensional algorithm to operate on a vector of data simultaneously. Unfortunately,
not all applications can utilize simultaneous FFT computations, and even where it is
possible it is often not convenient to do so.

Some FFT algorithms, notably the Pease algorithm [4], permit stride one, long vector
computation for virtually all operations. Fornberg [2] has reported success in implementing
this technique on the CDC 205, for instance. Unfortunately, the Pease algorithm requires
a bit-reversal permutation to be performed on the output data, and most vector computers
are not e�cient performing this permutation.

In a previous paper by the author [1], a technique was presented that avoids the power-
of-two memory strides inherent in the Stockham FFT. The �rst \trick" is to perform the
Stockham iterations incrementing k in the inner loop instead of j. In this way, the data
arrays X and Y may be accessed with unit stride (provided that complex data is stored
with real and imaginary parts separated instead of interleaved, as is the usual custom).
The second idea mentioned in [1] is to store the powers of �t that are needed for a single
iteration as contiguous data in a separate section of the array U . In this way, the fetch
of roots of unity from U always has stride one. The memory storage required for storing
all roots of unity in this manner is only twice the usual amount, and using some extra
memory in this fashion to increase performance is in fact an e�cient usage of a large
memory machine.

Unfortunately, in practice it is not e�cient to perform all iterations with k incremented
in the inner loop. This is because for the �rst few iterations the inner loop vector lengths
are very short, which sharply reduces performance on any vector machine. Thus, in the
implementation described in [1], it is necessary to perform the �rst few iterations with j
incremented in the inner loop, which results in some power-of-two memory strides.

A technique reported in [1] that signi�cantly improves the performance of the Cray-2
implementation is the usage of radix-4 versions of the above Stockham formulas. Using
radix-4 FFT formulas in e�ect allows two radix-2 iterations to be performed within the
fast CPU registers before results must be stored back to the main memory. This technique
thus lessens the dependence of the algorithm on the relatively slow Cray-2 main memory,
and a signi�cant improvement in performance is obtained. The resulting Fortran program
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is as much as 30% faster than Cray's assembly-coded library routine on the Cray-2.

A New Technique for Performing Power-of-Two FFTs

In [4] and [5] Swarztrauber surveys the best algorithms currently available for per-
forming FFTs on parallel and vector computers. Included in [5] are two variations of the
Stockham FFT, each di�erent than the algorithm listed above. These variant FFTs each
have the property that all inner loop calculations can be performed with stride one accesses
of the main data arrays. It is necessary, however, to switch from one variant to the other
to avoid very short inner loop vector lengths, and this switch from one variant to the other
requires a transposition permutation.

The formulas for Swarztrauber's variations of the Stockham FFT are as follows. Let
n = 2lm. It may be assumed that the factors l and m are powers of two if desired, but the
formulas are valid for any factorization. In the usual power-of-two case, l is initially set to
be n=2 and decreases by a factor of two with each iteration. Similarly, m is initially set to
be 1 and increases by a factor of two with each iteration. As before, X denotes the input
data and Y denotes the output data for each iteration, but in an e�cient implementation,
the iterations are performed from X to Y and from Y to X. In the following, !p denotes
e�2�i=p.

Radix-2 Variant 1

c0 = X(j + 2kl)

c1 = X(j + 2kl + l)

Y (j + kl) = c0 + c1

Y (j + kl + lm) = !j
2l(c0 � c1)

0 � j < l 0 � k < m

Radix-2 Variant 2

c0 = X(k + jm)

c1 = X(k + jm+ lm)

Y (k + 2jm) = c0 + c1

Y (k + 2jm+m) = !j
2l(c0 � c1)

0 � j < l 0 � k < m

These formulas suggest that in the inner computational loops, j should be incremented
in Variant 1, and k should be incremented in Variant 2. In this manner, all fetches and
stores of data in the X and Y arrays are with unit stride. The manner in which roots of
unity are fetched is not an issue in Variant 2, since this may be done in the outer loop.
In Variant 1, on the other hand, roots of unity must be fetched in the inner loop, and
these fetches ordinarily have power-of-two memory strides. Such strides can be avoided,
however, by employing the technique mentioned above of precalculating the roots of unity
needed for each iteration in a separate, contiguous section of the U array. Once this is
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done, all iterations of a power-of-two FFT using the above formulas may be performed
using exclusively unit stride memory accesses.

The choice of the crossover point between the two variants depends on the computer
system being used. Normally only the �rst few iterations are performed using Variant 1,
because roots of unity must be fetched in the inner loop. Once the value of m is su�ciently
large that the harmful e�ect of very short vector lengths is avoided, then Variant 2 is used
for all succeeding iterations.

As mentioned above, the switch between the two variants requires that the data (consid-
ered as a 2l�m matrix) be transposed. Unfortunately, the usual method for performing a
matrix transposition with power-of-two dimensions involves numerous power-of-two mem-
ory strides. While it is not possible to transpose such a matrix with exclusively unit stride
operations, the memory bank con
icts that occur on most vector computer systems can
be avoided as follows. Assume for simplicity that n = lm and l � m. Then set p = l + 1
and q = m+ 1. Then the data array X may be transposed as follows:

Y (iq + j) = X(ip+ lj) 0 � i < m� j; 0 � j < m

Y (iq +mj) = X(ip+ j) 0 � i < m; 1 � j < l �m

Y (iq +mj) = X(ip+ j) 0 � i < l � j; l �m � j < l

These formulas in e�ect perform a matrix transposition along diagonals. In this manner,
all memory accesses are with constant strides that are one larger than a power of two.
On many systems, including Cray X-MP and Cray-2 systems, memory accesses with such
strides are performed virtually as fast as with stride one. On other systems, such as the
CDC 205, any nonunit stride will result in reduced performance, but the reduction will be
greatly moderated by the absence of bank con
icts.

Radix-4 Formulas

In the author's previous paper [1], it was found that radix-4 formulas resulted in a
signi�cant improvement in the performance on the Cray-2. This is due to the fact, as was
mentioned above, that radix-4 iterations perform the work of two radix-2 iterations with
only one access of the data arrays in main memory. The same principle applies to the
algorithm described in this paper. The corresponding radix-4 formulas are as follows:

Radix-4 Variant 1

c0 = X(j + 4kl)

c1 = X(j + 4kl + l)

c2 = X(j + 4kl + 2l)

c3 = X(j + 4kl + 3l)

d0 = c0 + c2

d1 = c0 � c2

d2 = c1 + c3
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d3 = �i(c1 � c3)

Y (j + kl) = d0 + d2

Y (j + kl + lm) = !j
4l(d1 + d3)

Y (j + kl + 2lm) = !2j
4l (d0 � d2)

Y (j + kl + 3lm) = !3j
4l (d1 � d3)

0 � j < l 0 � k < m

Radix-4 Variant 2

c0 = X(k + jm)

c1 = X(k + jm+ lm)

c2 = X(k + jm+ 2lm)

c3 = X(k + jm+ 3lm)

d0 = c0 + c2

d1 = c0 � c2

d2 = c1 + c3

d3 = �i(c1 � c3)

Y (k + 4jm) = d0 + d2

Y (k + 4jm+m) = !j
4l(d1 + d3)

Y (k + 4jm+ 2m) = !2j
4l (d0 � d2)

Y (k + 4jm+ 3m) = !3j
4l (d1 � d3)

0 � j < l 0 � k < m

It should be noted that in practice, both the radix-4 and radix-2 formulas must be used,
in order that transforms of both even and odd power-of-two sizes may be processed.

Performance Results

The above technique has been implemented in a Fortran program and run on a number
of advanced vector computers. In each case, excellent performance results have been ob-
tained. On the CDC 205, a rate of 105 million 64-bit 
oating-point operations per second
(MFLOPS) was obtained on a transform of size 217. On the Convex C1P, a rate of 7.9
MFLOPS was obtained on a transform of size 215 using the radix-2 version.

The results on the Cray-2, which is very sensitive to power-of-two memory strides, are
particularly encouraging. Table 1 compares CFFTZ, which is a Fortran program based
on the radix-4 technique described in this paper, to CFFT2, which is the assembly-coded
library routine provided by Cray Research, Inc. The size of the transform is 2m, where m
is given in the �rst column. The column headed MFLOPS gives the performance of the
program CFFTZ, based on the formula 5m2m for the number of 
oating-point operations
for a transform of size 2m. The error statistics listed in this table are the root-mean-square
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CFFT2 CFFTZ Time Error
m CPU Time Error CPU Time Error MFLOPS Ratio Ratio
8 0.00023 5.111�10�15 0.00027 6.078�10�15 37.92 0.846 0.8410
9 0.00048 5.658�10�15 0.00045 6.130�10�15 51.00 1.061 0.9229
10 0.00099 6.784�10�15 0.00074 6.913�10�15 69.60 1.347 0.9813
11 0.00204 1.102�10�14 0.00148 7.052�10�15 76.33 1.380 1.562
12 0.00420 1.252�10�14 0.00274 7.608�10�15 89.62 1.531 1.646
13 0.00868 3.510�10�14 0.00538 7.865�10�15 98.99 1.614 4.462
14 0.01871 5.445�10�14 0.01055 8.430�10�15 108.70 1.773 6.459
15 0.03987 2.095�10�13 0.02427 8.555�10�15 101.28 1.643 24.49
16 0.07719 2.518�10�13 0.04724 9.092�10�15 110.99 1.634 27.69
17 0.16113 6.416�10�13 0.09524 9.248�10�15 116.98 1.692 69.38
18 0.32692 9.999�10�13 0.19488 9.758�10�15 121.07 1.678 102.5
19 0.67228 7.362�10�13 0.43286 9.847�10�15 115.06 1.553 74.76
20 1.39522 4.498�10�13 0.89189 1.035�10�14 117.57 1.564 43.47

Table 1: Cray-2 Performance Figures

(RMS) error after performing a forward and an inverse FFT on pseudorandom data. These
runs were made on one processor of the Cray-2 system with a normal background of jobs
running on the other three processors.

Conclusions

An implementation of Swarztrauber's variations of the Stockham FFT algorithm, com-
bined with special techniques for eliminating power-of-two memory strides in the access of
roots of unity and in performing a matrix transposition, has resulted in a high-performance
one-dimensional power-of-two FFT suitable for many vector computers. A Fortran radix-4
implementation of this method runs as much as 77% faster than Cray's assembly-coded
library routine on the Cray-2. A side bene�t of this program is that its numeric precision
is superior to Cray's library routine. The reason for the improved precision is not known.

While the author's implementation has focused on single processor vector computers,
the unit stride feature of the above algorithm is highly appropriate for parallel systems.
Indeed, Swarztrauber's paper [6] emphasizes the application of his technique to hypercubes
and other multiprocessor systems. It thus appears that this basic technique is well suited
for a variety of advanced systems.
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