
1

High-Precision Arithmetic:
Progress and Challenges

David H. Bailey, Member, IEEE and Jonathan M. Borwein

Abstract—For many scientific calculations, particularly those involving empirical data, IEEE 32-bit floating-point arithmetic
produces results of sufficient accuracy, while for other applications IEEE 64-bit floating-point is more appropriate. But for some
very demanding applications, even higher levels of precision are often required. This article discusses the challenge of high-
precision computation and presents a sample of applications, including some new results from the past year or two. This article
also discusses what facilities are required to support future high-precision computing, in light of emerging applications and
changes in computer architecture, such as highly parallel systems and graphical processing units.

Index Terms—high-precision arithmetic, numerical analysis, numerical error, experimental mathematics

F

1 INTRODUCTION

For many scientific calculations, particularly those
that employ empirical data, IEEE 32-bit floating-point
arithmetic is sufficiently accurate, and is preferred
since it saves memory, run time and energy usage.
For other applications, 64-bit floating-point arithmetic
is required to produce results of sufficient accuracy,
although some users find that they can obtain satis-
factory results by switching between 32-bit and 64-bit,
using the latter only for certain numerically sensitive
sections of code. One challenge of modern computing
is to develop tools that will help users determine
which parts of a computation can be performed with
lower precision and which steps must be performed
with higher precision.

Moreover, some scientists and engineers running
large computations have recently discovered, often
to their great dismay, that with the rapidly increas-
ing scale of their computations, numerical difficulties
render the results of questionable accuracy even with
64-bit arithmetic. What often happens is that a con-
ditional test takes the wrong branch, so that in some
circumstances the results are completely wrong.

As a single example that has been reported to
the present authors, the ATLAS experiment at the
Large Hadron Collider (which was employed in the
2012 discovery of the Higgs boson) relies crucially on
the ability to track charged particles with exquisite
precision (10 microns over a 10m length) and high
reliability (over 99% of roughly 1000 charged particles
per collision correctly identified). The software used

• Bailey is with the Lawrence Berkeley National Laboratory, Berkeley,
CA 94720, USA and the University of California, Davis, Department
of Computer Science, Davis, CA, 95616 USA, dhbailey@lbl.gov.

• Borwein is with the Centre for Computer Assisted
Research Mathematics and its Applications (CARMA),
University of Newcastle, Callaghan, NSW 2308, Australia,
jonathan.borwein@newcastle.edu.au. Supported in
part by the Australian Research Council.

for these detections involves roughly five million lines
of C++ and Python code, developed over a 15-year
period by some 2000 physicists and engineers.

Recently, in an attempt to speed up these calcu-
lations, researchers found that merely changing the
underlying math library caused some collisions to be
missed and others misidentified. This suggests that
their code has significant numerical sensitivities, and
results may be invalid in certain cases.

How serious are these difficulties? Are they an
inevitable consequence of the limited accuracy of
empirical data, or are they exacerbated by numerical
sensitivities? How can they be tracked down in source
code? And, once identified, how can they most easily
be remedied or controlled? For which of these applica-
tions is high-precision arithmetic required? These are
questions many researchers are now asking.

1.1 Numerical reproducibility
Closely related to the question of numerical error is
the issue of reproducibility in scientific computing. A
December 2012 workshop held at Brown University
in Rhode Island, USA, noted that:

Science is built upon the foundations of theory
and experiment validated and improved through
open, transparent communication. With the in-
creasingly central role of computation in scientific
discovery this means communicating all details
of the computations needed for others to replicate
the experiment. [70].

The workshop report further noted
Numerical round-off error and numerical differ-
ences are greatly magnified as computational sim-
ulations are scaled up to run on highly parallel
systems. As a result, it is increasingly difficult
to determine whether a code has been correctly
ported to a new system, because computational
results quickly diverge from standard benchmark

2

cases. And it is doubly difficult for other re-
searchers, using independently written codes and
distinct computer systems, to reproduce published
results. [70]

The workshop’s main recommendations are also dis-
cussed in [18], [69].

Example 1.1 (Variable precision I). As a simple illus-
tration of these issues, suppose one wishes to com-
pute the arc length of the irregular function g(x) =
x+
∑

06k610 2−k sin(2kx), over the interval (0, π),using
107 abscissa points. See Figure 1.

0"

0.5"

1"

1.5"

2"

2.5"

3"

3.5"

0" 0.5" 1" 1.5" 2" 2.5" 3" 3.5"

Fig. 1. Graph of g(x) = x +
∑

06k610 2
−k sin(2kx), over

(0, π).

If this computation is performed with ordinary
IEEE double arithmetic, the calculation takes 2.59
seconds and yields the result 7.073157029008510. If
performed on another system, the results typically
differ in the last four digits. If it is done using “double-
double” arithmetic (approximately 31-digit accuracy;
see Section 2), the run takes 47.39 seconds seconds and
yields the result 7.073157029007832, which is correct
to 15 digits. But if only the summation is performed
using double-double arithmetic, and the integrand is
computed using standard double arithmetic, the result
is identical to the double-double result (to 15 digits),
yet the computation only takes 3.47 seconds. In other
words, the judicious usage of double-double arith-
metic in a critical summation completely eliminates
the numerical non-reproducibility, with only a minor
increase in run time [4]. 3

A larger example of this sort arose in an atmo-
spheric model (a component of large climate model).
While such computations are by their fundamental
nature “chaotic,” so that computations will eventually
depart from any benchmark standard case, nonethe-
less it is essential to distinguish avoidable numerical
error from fundamental chaos.

Researchers working with this atmospheric model
were perplexed by the difficulty of reproducing
benchmark results. Even when their code was ported
from one system to another, or when the number
of processors used was changed, the computed data

diverged from a benchmark run after just a few days
of simulated time. As a result, they could never be
sure that in the process of porting their code or
changing the number of processors that they did not
introduce a bug into their code.

After an in-depth analysis of this code, He and
Ding found that merely by employing double-double
arithmetic in two critical global summations, almost
all of this numerical variability was eliminated. This
permitted benchmark results to be accurately repro-
duced for a significantly longer time, with virtually
no change in total run time [51].

Researchers working with some large computa-
tional physics applications reported similar success,
again merely by modifying their codes to employ a
form of high-precision arithmetic in several critical
summation loops [61].

1.2 Dealing with numerical difficulties

Some suggest that the only proper way to deal with
such difficulties is to carefully examine each algorithm
and subroutine in a code, to ensure that only the best
schemes are being used, and that they are all imple-
mented in the most stable manner. Others suggest
employing interval arithmetic in some or all sections
of the code. The trouble with these choices, from a
pragmatic point of view, stems from the regrettable
fact that very few scientists and engineers who do
scientific computation in their work have the requisite
advanced training in numerical analysis.

For example, as we pointed out in [12], in 2010
a total of 870 students graduated in mathematics,
physics, statistics, chemistry, computer science and
engineering at the University of California, Berkeley.
Several hundred others, in fields such as biology, ge-
ology, medicine, economics, psychology, sociology, are
also likely to do scientific computing in their work. By
comparison, in 2010 only 219 students enrolled in two
sections of Math 128A, a one-semester introductory
numerical analysis course, and only 24 enrolled in
Math 128B, a more rigorous numerical analysis course
(with similar numbers for previous years). Thus of
the 2010 U.C. Berkeley graduates who likely will
do scientific computing in their professional work,
only about 2% had advanced training in numerical
analysis. This percentage does not appear to be any
higher at other universities, and may well be lower.

High-precision arithmetic is thus potentially quite
useful in real-world computing, because even in cases
where superior algorithms or implementation tech-
niques are known in the literature, simply increasing
the precision used for the existing algorithm, using
tools such as those described below, is often both
simpler and safer, because in most cases only minor
changes need to be made to the existing code. And
for other computations, as we shall see, there is no
alternative to higher precision.

3

1.3 U.C. Berkeley’s “Precimonious” tool
Recently a team led by James Demmel of U. C. Berke-
ley have begun developing software facilities to find
and ameliorate numerical anomalies in large-scale
computations. These include facilities to:
• Test the level of numerical accuracy required for

an application.
• Delimit the portions of code that are inaccurate.
• Search the space of possible code modifications.
• Repair numerical difficulties, including usage of

high-precision arithmetic.
• Navigate through a hierarchy of precision levels

(32-bit, 64-bit or higher as needed).
The current version of this tool is known as “Prec-

imonious.” Details on this tool, with some examples
of its usage, are presented in [63].

1.4 Computations that require extra precision
Some scientific computations actually require more
than the standard IEEE 64-bit floating-point arith-
metic. Typically these applications feature one or more
of these characteristics: (a) ill-conditioned linear sys-
tems; (b) large summations; (c) long-time simulations;
(d) large-scale, highly parallel simulations; (e) high-
resolution computations; or (f) experimental mathe-
matics computations.

The following example, adapted from [12], demon-
strates how numerical difficulties can arise in a very
innocent-looking setting, and shows how these dif-
ficulties can be ameliorated, in many cases, by the
judicious usage of high-precision arithmetic.

Example 1.2 (Variable precision II). Suppose one
suspects that the data (1, 32771, 262217, 885493,
2101313, 4111751, 7124761) are given by an integer
polynomial for integer arguments (0, 1, . . . , 6). Most
scientists and engineers will employ a familiar
least-squares scheme to recover this polynomial
[60, pg. 44]. This can be done by constructing the
(n+ 1)× (n+ 1) system

n+ 1
∑n
k=1 xk · · ·

∑n
k=1 x

n
k∑n

k=1 xk
∑n
k=1 x

2
k · · ·

∑n
k=1 x

n+1
k

...
...

. . .
...∑n

k=1 x
n
k

∑
k=1 x

n+1
k · · ·

∑n
k=1 x

2n
k



a0
a1
...
an



=


∑n
k=1 yk∑n

k=1 xkyk
...∑n

k=1 x
n
kyk

 ,
where (xk) and (yk) are the arguments and data
values given above. This system is typically solved
for (a1, a2, · · · , an) using LINPACK [45] or LAPACK
[44] software.

An implementation of this approach using standard
IEEE 64-bit floating-point arithmetic, with final results
rounded to the nearest integer, correctly finds the

vector of coefficients (1, 0, 0, 32769, 0, 0, 1), which
corresponds to f(x) = 1 + (215 + 1)x3 + x6. But
this scheme fails when given the 9-long sequence
(1, 1048579, 16777489, 84941299, 268501249, 655751251,
1360635409, 2523398179, 4311748609), which is
generated by the degree-8 polynomial function
f(x) = 1 + (220 + 1)x4 + x8.

Readers trained in numerical analysis may
recognize that the above scheme is not the best
approach for this problem, because the matrix system
is known to be ill-conditioned. A better approach is
to employ either a scheme based on the Lagrange
interpolating polynomial, or else a scheme due to
Demmel and Koev [43] (currently the state-of-the-art
for such problems). A 64-bit implementation of either
scheme finds the correct polynomial in the degree-8
case. However, both fail to recover the degree-12
polynomial 1+(227 +1)x6 +x12 when given the input
(1, 134217731, 8589938753, 97845255883, 549772595201,
2097396156251, 6264239146561, 15804422886323,
35253091827713, 71611233653971, 135217729000001,
240913322581691, 409688091758593).

On the other hand, merely by modifying a simple
least-squares program to employ double-double arith-
metic, using the QD software (see the next section),
all three problems (degrees 6, 8 and 12) are correctly
solved without incident. 3

2 TECHNIQUES AND SOFTWARE FOR HIGH-
PRECISION ARITHMETIC

By far the most common form of extra-precision
arithmetic is roughly twice the level of standard 64-
bit IEEE floating-point arithmetic. One option is the
IEEE standard for 128-bit floating-point arithmetic,
with 112 mantissa bits, but sadly it is not yet widely
implemented in hardware. A much more common op-
tion, implemented in software, is known as “double-
double” arithmetic (approximately 31-digit accuracy).
This datatype consists of a pair of 64-bit IEEE floats
(s, t), where s is the 64-bit floating-point value closest
to the desired value, and t is the difference (positive
or negative) between the true value and s.

Such data can be added by using a scheme orig-
inally proposed by Donald E. Knuth [54] (see also
[64]): Let the notation fl mean that the indicated
operations are to be performed with rounded IEEE
64-bit arithmetic. Then given 64-bit floats a and b, the
sequence

x = fl(a+ b)

y = fl(x− a)

z = fl((a− (x− y)) + (b− y))

returns their sum as a double-double entity: x is the
closest double value to a + b, and z is the low-order
word, so that (x, z) jointly represents the exact sum
of a and b. A simple extension of this sequence can

4

be used to add two double-double operands, and
related schemes can be used to realize all four basic
arithmetic operations on double-double data. Similar
schemes also work well for quad-double arithmetic,
which operates on strings of four IEEE 64-bit floats.
This datatype provides roughly 62-digit accuracy [52].

For higher-levels of precision, one typically repre-
sents a high-precision datum as a string of floats or
integers, where the first word contains the size of the
datum, the second word contains an exponent, and
each subsequent word contains B bits of the mantissa.
For moderate precision levels (up to roughly 1000
digits), arithmetic on such data is typically performed
using adaptations of the familiar schemes taught in
grade school, operating on entire words rather than
individual digits.

Above about 1000 decimal digits, advanced algo-
rithms should be employed for maximum efficiency.
For example, note that the product of two high-
precision values, represented as above, may be com-
puted by a convolution scheme as follows: let the two
high-precision data vectors (without exponents and
other “bookkeeping” words) be x = (x0, x1, · · · , xn−1)
and y = (y0, y1, · · · yn−1), where each word contains B
bits, i.e., an integer from 0 to 2B − 1. First extend x
and y to length 2n by appending n zeroes to each.
Then compute the vector z = (z0, z1, · · · z2n−1) as

zk =

2n−1∑
k=0

xky2n−k−1. (1)

Finally, release carries, which is done by iterating
zk−1 := zk−1 + int(zk/2

B), beginning with k = 2n− 1
and proceeding in reverse order to k = 0. The result is
the 2n-long mantissa of the high-precision product of
x and y. After inserting appropriate sign and exponent
words and rounding the result if needed to n mantissa
words, the operation is complete.

Now note that the convolution operation (1) may
be performed using fast Fourier transforms (FFTs):

z = F−1[F [x] · F [y]] (2)

It should be noted in the above that it is often neces-
sary to limit B, so that the final results of the floating-
point FFT operations can be reliably rounded to the
nearest integer. Another option is to use a number-
theoretic FFT, which is not subject to round-off error.
Either way, efficient implementations of this scheme
can dramatically accelerate multiplication for very
high-precision data, since in effect it reduces an O(n2)
operation to an O(n log n) operation. For details, see
[24] or [32, pp. 215–245].

Square roots and n-th roots can be computed effi-
ciently by Newton iteration-based schemes. The basic
transcendental functions can be computed by means
of Taylor series-based algorithms or, for higher levels
of precision, quadratically convergent algorithms that

approximately double the number of correct digits
with each iteration [32, pp. 215–245], [36].

Software for performing high-precision arithmetic
has been available for quite some time, for example
in the commercial packages Mathematica and Maple.
However, until 10 or 15 years ago those with ap-
plications written in more conventional languages,
such as C++ or Fortran-90, often found it necessary
to rewrite their codes, replacing arithmetic operations
with subroutine calls, which was a very tedious and
error-prone process.

Nowadays there are several freely available high-
precision software packages, together with accompa-
nying high-level language interfaces, utilizing opera-
tor overloading, that make code conversions relatively
painless. In most cases, one merely changes the type
statements of those variables that are to be treated as
high precision and makes a handful of other modifica-
tions. Thereafter when one of these variables appears
in an expression, the correct underlying routines are
automatically called.

Here are a few such packages. The ARPREC [24],
QD [52] and MPFUN90 packages are available from
http://crd-legacy.lbl.gov/∼dhbailey/mpdist.
• ARPREC: supports arbitrary precision real, in-

teger and complex, with many algebraic and
transcendental functions. Includes high-level lan-
guage interfaces for C++ and Fortran-90.

• GMP: supports high-precision integer, rational
and floating-point calculations. Distributed under
the GNU license by the Free Software Founda-
tion. Available at http://gmplib.org.

• MPFR: supports multiple-precision floating-point
computations with exact rounding, based on
GMP. Available at http://www.mpfr.org.

• MPFR++: a high-level C++ interface to MPFR.
Available at http://perso.ens-lyon.fr/nathalie.
revol/software.html.

• MPFUN90: similar to ARPREC in user-level func-
tionality, but written entirely in Fortran-90. In-
cludes a Fortran-90 high-level interface.

• QD: includes routines to perform “double-
double” (approx. 31 digits) and “quad-double”
(approx. 62 digits) arithmetic, as well as many
algebraic and transcendental functions. Includes
high-level language interfaces for C++ and
Fortran-90.

Obviously there is an extra cost for performing
high-precision arithmetic. Double-double computa-
tions typically run at least five times slower than 64-
bit; quad-double computations typically run at least
25 times slower; and arbitrary precision arithmetic
may be hundreds or thousands of times slower. For-
tunately, however, high-precision arithmetic is often
only needed for a small portion of code, so that the
total run time may increase only modestly.

What’s more, the advent of highly parallel com-
puter systems means that high-precision computa-

5

tions that once were impractical can now be com-
pleted in reasonable run time. Indeed, numerous
demanding high-precision computations have been
done in this way, most often by invoking paral-
lelism at the level of loops in the application rather
than within individual high-precision arithmetic oper-
ations. For example, 1024 processors were employed
to compute a numerical integral in [7], and up to 512
processors were employed to computed some two-
and three-dimensional integrals in [14]. Parallel high-
precision computation will be further discussed in
Section 8.

3 APPLICATIONS OF HIGH-PRECISION
ARITHMETIC

Here we briefly summarize some of the numerous ap-
plications that have recently arisen for high-precision
arithmetic in conventional scientific computing. This
material is condensed and adapted from [12]. See [12]
for additional details and examples.

3.1 Planetary orbit dynamics
Planetary scientists have long debated whether the
solar system is stable over many millions or billions of
years, and whether our solar system is typical in this
regard. Researchers running simulations of the solar
system typically find that 64-bit computations are suf-
ficiently accurate for long periods of time, but then fail
at certain critical points. As a result, some researchers
have employed higher precision arithmetic (typically
IEEE extended or double-double) to reduce numerical
error, in combination with other techniques [55].

3.2 Coulomb n-body atomic systems
Alexei Frolov of the University of Western Ontario
in Canada has employed high-precision software in
studies of n-body Coulomb atomic systems, which
require the accurate solutions of large and nearly
singular linear systems. His computations typically
use 120-digit arithmetic, which is sufficient to solve
certain bound state problems that until a few years
ago were consider intractable [22], [49].

3.3 Nuclear physics computations
Researchers have recently applied high-precision
computations to produce accurate solutions to the
Schrodinger equation (from quantum theory) for the
lithium atom. In particular, they have been able to
compute the non-relativistic ground state energy for
lithium to nearly 12-digit accuracy, which is 1500
times better than earlier results [78]. These researchers
are now targeting a computation of the fine structure
constant of physics (approx. 7.2973525698 × 10−3),
hopefully to within a few parts per billion, directly
from the QED theory [79].

3.4 Scattering amplitudes
A team of physicists working on the Large Hadron
Collider at CERN (distinct from the team mentioned
in Section 1) is computing scattering amplitudes
of collisions involving various fundamental particles
(quarks, gluons, bosons). This program performs com-
putations using 64-bit IEEE floating-point arithmetic
in most cases, but then recomputes results where
necessary using double-double arithmetic. These re-
searchers are now designing a scheme that dynami-
cally varies the precision level according to the inher-
ent stability of the underlying computation [46], [29],
[59], [42].

3.5 Dynamical systems
High-precision arithmetic has long been employed
in the study of dynamical systems, especially in the
analysis of bifurcations and periodic orbit stability.
Many of these computations have employed Runge-
Kutta methods, but in the past few years researchers
have found that the Taylor method, implemented with
high-precision arithmetic, is even more effective [68].

The Taylor method can be defined as follows [26],
[28], [40]. Consider the initial value problem ẏ =
f(t, y), where f is assumed to be a smooth function.
Then the solution at ti is approximated by yi from
the n-th degree Taylor series approximation of y(t) at
t = ti. So, denoting hi = ti − ti−1, one can write

y(t0) =: y0,

y(ti) ≈ yi−1 + f(ti−1, yi−1)hi + . . .

+
1

n!

dn−1f(ti−1, yi−1)

dtn−1
hni =: yi. (3)

This method thus reduces the solution of the dy-
namical system to the determination of certain Taylor
coefficients, which may be done efficiently using au-
tomatic differentiation techniques, provided one uses
sufficiently accurate arithmetic [26], [27], [28].

10
−30

10
−20

10
−10

10
−1

10
0

10
1

C
PU

 ti
m

e

dop853
odex
TIDES

100 200 300 400 500
0

2

4

6

8

10

12

14

16

−Log
10

(Relative error)

C
PU

 ti
m

e

TIDES (variable precision)

Relative error

quadruple precision multiple precision

Fig. 2. Left: Error vs. CPU time for the numerical solu-
tion of the unstable periodic orbit LR for the Lorenz model
(in double-double arithmetic) using a Runge-Kutta code
(dop853), an extrapolation code (odex) and a Taylor series
method (TIDES). Right: Error vs. CPU time for the numerical
solution of an unstable periodic orbit for the Lorenz model (in
500-digit arithmetic) using the TIDES code.

Figure 2 (left) compares computations of the un-
stable periodic orbit LR in the Lorenz model [57]

6

with three methods: (a) the Taylor method (using
the TIDES code [1]), (b) a conventional Runge-Kutta
method (using the dop853 code), and (c) an extrapo-
lation method (using the odes code) [50]. In symbolic
dynamics notation, “LR” means one loop around the
left equilibrium point, followed by one loop around
the right equilibrium point.

When these methods are performed using double
precision arithmetic, the Runge-Kutta code is most
accurate, but when done in double-double or higher-
precision arithmetic, the Taylor method is the fastest.
In many problems, high-precision arithmetic is re-
quired to obtain accurate results, and so for such prob-
lems the Taylor scheme is the only reliable method
among the standard methods. The right graph in
Figure 2 shows the error for an unstable orbit using
500-digit arithmetic using the TIDES code [74].

−10 0 10 −20
0

200

5

10

15

20

25

30

35

40

45

y
x

z

 1 period - TIDES (16 digits)
 16 periods -TIDES (300 digits)

First point TIDES (16 digits)
First-Last point TIDES (300 digits)

Last point TIDES (16 digits)

Fig. 3. Numerical solution of the L25R25 unstable periodic
orbit of the Lorenz model for 16 time periods using the TIDES
code with 300 digits, compared with just one time period
using 64-bit IEEE arithmetic.

Figure 3 demonstrates the need for high accuracy in
these solutions. It shows the results for completing 16
time periods of the L25R25 unstable periodic orbit of
the Lorenz model using the the TIDES code with 300
digits, compared with just one time period using IEEE
64-bit floating-point arithmetic. Note that since more
than 16 digits are lost on each period, it is not possible
to accurately compute even a single period of this
orbit using only IEEE 64-bit floating-point arithmetic.

3.6 Periodic orbits

The Lindstedt-Poincaré method [73] for computing
periodic orbits in dynamical systems is based on the
Lindstedt-Poincaré technique of perturbation theory,
together with Newton’s method for solving nonlinear
systems and Fourier interpolation. D. Viswanath [74]
has used this method, implemented in part with high-
precision arithmetic software (more than 100 digits of
precision) to compute highly unstable periodic orbits.
These calculations typically may lose more than 50
digits of precision in each orbit. The fractal proper-
ties of the Lorenz attractor, which require very high
precision to compute, are shown in Figure 4 [74], [75].

Fig. 4. Fractal property of the Lorenz attractor. The first plot
shows a rectangle in the plane. All later plots zoom in on a
tiny region (too small to be seen by the unaided eye) at the
center of the red rectangle of the preceding plot to show that
what appears to be a line is in fact not a line. (Reproduced
with permission from [75]).

Another option currently being pursued by re-
searchers computing these periodic orbits is to employ
the Taylor series method in conjunction with Newton
iterations, together with more than 1000-digit arith-
metic [2].

To conclude this section, we mention a fascinating
article [37], which describes how simulations must
employ quantum molecular dynamics and special
relativity to obtain realistic results on mercury’s prop-
erties that correspond to measured properties (notably
its melting temperature). In arenas such as this, one
must first accurately capture the physics, but one
should also remember the option to parsimoniously
increase precision when needed.

4 HIGH-PRECISION ARITHMETIC IN EXPERI-
MENTAL MATHEMATICS

Very high-precision floating-point arithmetic is now
considered an indispensable tool in the field of exper-
imental mathematics [32], [6].

Many of these computations involve variants of
Ferguson’s PSLQ integer relation detection algorithm
[47], [19]. Suppose one is given an n-long vector (xi)
of real or complex numbers (presented as a vector of
high-precision values). The PSLQ algorithm finds the
integer coefficients (ai), not all zero, such that

a1x1 + a2x2 + · · ·+ anxn = 0

(to available precision), or else determines that there
is no such relation within a certain bound on the size
of the coefficients. Integer relation detection almost
always requires very high precision—at least (n× d)-
digit precision, where d is the size in digits of the
largest ai and n is the vector length, or else the true
relation, if one exists, will be lost in a sea of spurious
numerical artifacts.

PSLQ constructs a sequence of integer-valued ma-
trices Bn that reduce the size of the vector y =
x · Bn, until either the relation is found (as one of

7

the columns of matrix Bn), or else numeric precision
is exhausted. A relation is detected when the size of
smallest entry of the y vector suddenly drops to zero
or to less than the “epsilon” of the high-precision
arithmetic system being employed (i.e. 10−p, where
p is the number of digits of precision). The size of the
drop in min(|yi|) at the iteration when the relation is
detected can be viewed as a confidence level that the
relation so discovered is not a numerical artifact. A
drop of 20 or more orders of magnitude almost always
indicates a real relation (although a numerical calcu-
lation such as this cannot be interpreted as rigorous
proof that the relation is mathematically correct).

Two- and three-level variants of PSLQ are known,
which perform almost all iterations with only double
or intermediate precision, updating full-precision ar-
rays only as needed. These variants are hundreds of
times faster than the original PSLQ. A multipair vari-
ant of PSLQ is known that dramatically reduces the
number of iterations required and is thus well-suited
to parallel systems. As a bonus, it runs faster even
on one CPU. Finally, two- and three-level versions of
multipair PSLQ are now available, which combine the
best of both worlds [19]. Most of our computations
have been done with a two-level multipair PSLQ
program.

Figure 5, which illustrates a multipair PSLQ run,
shows the abrupt drop in min |yi| (by nearly 200
orders of magnitude in this case) at iteration 199,
when the relation was detected.

!300$

!250$

!200$

!150$

!100$

!50$

0$

1$ 11$ 21$ 31$ 41$ 51$ 61$ 71$ 81$ 91$ 101$111$121$131$141$151$161$171$181$191$

Lo
g1
0&
[m

in
(y
i)]
&

Itera4on&number&

Fig. 5. Decrease of log10(min |yi|) in a multipair PSLQ run.

4.1 The BBP formula for π and normality
One of the earliest applications of PSLQ was to nu-
merically discover what is now known as the “BBP”
formula for π:

π =

∞∑
k=0

1

16k

(
4

8k + 1
− 2

8k + 4
− 1

8k + 5
− 1

8k + 6

)
.

This remarkable formula, after a simple manipulation,
can be used to calculate binary or base-16 digits of

π beginning at the n-th digit, without needing to
calculate any of the first n− 1 digits. The underlying
scheme requires very little memory and no multiple-
precision arithmetic software [13], [32, pp. 135–143].

Since 1996, when the BBP formula for π was discov-
ered, numerous other formulas of this type have been
found using PSLQ and then subsequently proven [3].
For example, a binary formula has been found for
Catalan’s constant G =

∑
n>0(−1)n/(2n + 1)2, and

both binary and ternary (base-3) formulas have been
found for π2 [17].

These formulas have been used to compute digits
that until just a decade or two ago were widely
regarded as forever beyond the reach of humankind.
For example, on March 14 (Pi Day), 2013, Ed Karrels
of Santa Clara University computed 26 base-16 digits
of π beginning at position one quadrillion [53]. His
result: 8353CB3F7F0C9ACCFA9AA215F2. In 2011, re-
searchers at IBM Australia employed the formulas
mentioned above to calculate base-64 digits of π2,
base-729 digits of π2 and base-4096 digits of G, be-
ginning at the ten trillionth position in each case.
These results were then validated by independent
computations [17].

At first, many regarded these PSLQ-discovered re-
sults to be amusing but of no deep mathematical
significance. But then it was found that these BBP-
type formulas have connections to the ancient (and
still unanswered) question of why the digits of π and
certain other related constants appear “random.”

To be precise, a constant α is said to be 2-normal, or
normal base-2, if it has the property that every string
of m base-2 digits appears, in the limit, with frequency
2−m. Normality in other bases is defined similarly.
Richard Crandall (deceased December 20, 2012) and
one of the present authors found that the question of
whether constants such as π and log 2 are 2-normal
reduces to a conjecture about the behavior of certain
pseudorandom number generators derived from the
associated BBP-type formulas [20], [32, pp. 163–178].
This same line of research subsequently led to a proof
that an uncountably infinite class of real numbers are
2-normal [21], [25], including, for instance,

α2,3 =

∞∑
n=0

1

3n23n
.

(This particular constant was proven 2-normal by
Stoneham in 1973; the more recent results span a
much larger class.) Although this constant is provably
2-normal, interestingly it is provably not 6-normal [9].

5 HIGH-PRECISION ARITHMETIC IN MATHE-
MATICAL PHYSICS

Very high-precision computations, combined with
variants of the PSLQ algorithm, have been remarkably
effective in resolving certain classes of definite inte-
grals that arise in mathematical physics settings. We

8

summarize here a few examples of this methodology
in action, following [12] and some related references
as shown below.

5.1 Ising integrals
In one study, the tanh-sinh quadrature scheme [23],
[71], implemented using the ARPREC high-precision
software [24], was employed to study the following
classes of integrals [14], [15]. The Dn integrals arise
in the Ising theory of mathematical physics, while the
Cn are connected to quantum field theory:

Cn =
4

n!

∫ ∞
0

· · ·
∫ ∞
0

1(∑n
j=1(uj + 1/uj)

)2 du1
u1
· · · dun

un

Dn =
4

n!

∫ ∞
0

· · ·
∫ ∞
0

∏
i<j

(
ui−uj

ui+uj

)2
(∑n

j=1(uj + 1/uj)
)2 du1

u1
· · · dun

un

En = 2

∫ 1

0

· · ·
∫ 1

0

 ∏
16j<k6n

uk − uj
uk + uj

2

dt2 dt3 · · · dtn.

In the last line uk =
∏k
i=1 ti.

In general, it is very difficult to compute high-
precision numerical values of n-dimensional integrals
such as these. But as it turn out, the Cn integrals can
be converted to one-dimensional integrals, which are
amenable to evaluation with the tanh-sinh scheme:

Cn =
2n

n!

∫ ∞
0

pKn
0 (p) dp.

Here K0 is the modified Bessel function [58]. 1000-
digit values of these sufficed to identify the first few
instances of Cn in terms of well-known constants. For
example, C4 = 7ζ(3)/12, where ζ denotes the Riemann
zeta function. For larger n, it quickly became clear that
the Cn approach the limit

lim
n→∞

Cn = 0.630473503374386796122040192710

This numerical value was quickly identified, us-
ing the Inverse Symbolic Calculator 2.0 (available at
http://carma-lx1.newcastle.edu.au:8087), as

lim
n→∞

Cn = 2e−2γ ,

where γ is Euler’s constant. This identity was then
proven [14]. Some results were also obtained for the
Dn and En integrals, although the numerical calcu-
lations involved there were much more expensive,
requiring highly parallel computation [14], [15].

5.2 Ramble integrals
A separate study considered n-dimensional ramble
integrals [8]

Wn(s) =

∫
[0,1]n

∣∣∣∣∣
n∑
k=1

e2πxki

∣∣∣∣∣
s

dx, (4)

for complex s. These integrals occur in the theory of
uniform random walk integrals in the plane, where
at each iteration, a step of length one is taken in a
random direction. Integrals such as (4) are the s-th
moment of the distance to the origin after n steps. In
[35], it is shown that when s = 0, the first derivatives
of these integrals are

W ′n(0) = log(2)− γ −
∫ 1

0

(Jn0 (x)− 1)
dx

x

−
∫ ∞
1

Jn0 (x)
dx

x

= log(2)− γ

−n
∫ ∞
0

log(x)Jn−10 (x)J1(x)dx.

Here Jn(x) is the Bessel function of the first kind [58].
These integrand functions, which are highly os-

cillatory, are very challenging to evaluate to high
precision. We employed tanh-sinh quadrature and
Gaussian quadrature, together with the Sidi mW ex-
trapolation algorithm, as described in a 1994 paper
by Lucas and Stone [56], which, in turn, is based
on two earlier papers by Sidi [65], [66]. While the
computations were relatively expensive, we were able
to compute 1000-digit values of these integrals for odd
n up to 17 [8]. Unfortunately, this scheme does not
work well for even n, but by employing a combination
of symbolic and numeric computation we were able
to obtain 50 to 100 good digits.

In the wake of this research, Sidi produced a refined
method [67], which he believes can be used for even n.
We recently started to implement it in high-precision
arithmetic, but do not yet have any results.

5.3 Moments of elliptic integral functions
The analysis of ramble integrals led to a study of
moments of integrals involving products of elliptic
integral functions [8]:

I(n0, n1, n2, n3, n4) =∫ 1

0

xn0Kn1(x)K ′n2(x)En3(x)E′n4(x)dx. (5)

Here the elliptic functions K,E and their complemen-
tary versions are given by:

K(x) =

∫ 1

0

dt√
(1− t2)(1− x2t2)

K ′(x) = K(
√

1− x2)

E(x) =

∫ 1

0

√
1− x2t2√
1− t2

dt

E′(x) = E(
√

1− x2).

These and related expressions arise in a variety
of physical contexts [16]. We computed over 4000
individual integrals of this form to between 1500
and 3000-digit precision using the ARPREC software

9

[24]. In most cases we were not able to identify
these integrals in closed form. But we did find many
interesting relations among these integrals, using a
high-precision multipair PSLQ program. Two of the
conjectured identities found by the multipair PSLQ
program are [8]:

81

∫ 1

0

x3K2(x)E(x)dx
?
=

−6

∫ 1

0

K3(x)dx− 24

∫ 1

0

x2K3(x)dx

+51

∫ 1

0

x3K3(x)dx+ 32

∫ 1

0

x4K3(x)dx, (6)

−243

∫ 1

0

x3K(x)E(x)K ′(x)dx
?
=

−59

∫ 1

0

K3(x)dx+ 468

∫ 1

0

x2K3(x)dx

+156

∫ 1

0

x3K3(x)dx− 624

∫ 1

0

x4K3(x)dx

−135

∫ 1

0

xK(x)E(x)K ′(x)dx. (7)

James Wan [76] has been able to prove many of these
identities, including, recently, (6), but by no means all.
A followup work [62] contains remarkable identities,
such as∫ 1

0

E(k)K ′(k)2dk =
π3

12
+

Γ8(1
4)

384π2
=
π3

12
+

2

3
K4

(
1√
2

)
,

for integrands which are three-fold products of elliptic
integrals.

6 LATTICE SUMS ARISING FROM A POISSON
EQUATION
In this section we describe some results, just com-
pleted [11], that arose out of attempts to solve the
Poisson equation, which arises in various contexts
such as engineering applications, the analysis of crys-
tal structures, and even the sharpening of photo-
graphic images.

The following lattice sums arise as values of basis
functions in the Poisson solutions [11]:

φn(r1, . . . , rn) =
1

π2

∑
m1,...,mn odd

eiπ(m1r1+···+mnrn)

m2
1 + · · ·+m2

n

.

By noting some striking connections with Jacobi ϑ-
function values, Richard Crandall, John Zucker and
the present authors were are able to develop new
closed forms for certain values of the arguments rk
[11].

Computing high-precision numerical values of such
sums was facilitated by deriving formulas such as

φ2(x, y) =
1

4π
log

cosh(πx) + cos(πy)

cosh(πx)− cos(πy)

− 2

π

∑
m∈O+

cosh(πmx) cos(πmy)

m(1 + eπm)
, (8)

which is valid for x, y ∈ [−1, 1].
After extensive high-precision numerical experi-

mentation using (8), we discovered (then proved) the
remarkable fact that when x and y are rational,

φ2(x, y) =
1

π
logA, (9)

where A is an algebraic number, namely the root of an
algebraic equation with integer coefficients.

In this case we computed α = exp(8πφ2(x, y)) (as
it turned out, the ‘8’ substantially reduces the de-
gree of polynomials and so computational cost), and
then generated the vector (1, α, α2, · · · , αd), which,
for various conjectured values of d, was input to
the multipair PSLQ program. When successful, the
program returned the vector of integer coefficients
(a0, a1, a2, · · · , ad) of a polynomial satisfied by α as
output. With some experimentation on the degree d,
and after symbolic verification using Mathematica, we
were able to ensure that the resulting polynomial is
in fact the minimal polynomial satisfied by α.

Here are some examples of the minimal
polynomials discovered by this process [11]:

k Minimal polynomial for exp(8πφ2(1/k, 1/k))
5 1 + 52α− 26α2 − 12α3 + α4

6 1− 28α+ 6α2 − 28α3 + α4

7 −1− 196α+ 1302α2 − 14756α3 + 15673α4

+42168α5 − 111916α6 + 82264α7 − 35231α8

+19852α9 − 2954α10 − 308α11 + 7α12

8 1− 88α+ 92α2 − 872α3 + 1990α4 − 872α5

+92α6 − 88α7 + α8

9 −1− 534α+ 10923α2 − 342864α3 + 2304684α4

−7820712α5 + 13729068α6

−22321584α7 + 39775986α8 − 44431044α9

+19899882α10 + 3546576α11

−8458020α12 + 4009176α13 − 273348α14

+121392α15 − 11385α16 − 342α17 + 3α18

10 1− 216α+ 860α2 − 744α3 + 454α4 − 744α5

+860α6 − 216α7 + α8

Using this data, we were able to conjecture a for-
mula that gives the degree d as a function of k [11].

These computations required prodigiously high
precision—up to 20,000-digit floating-point arith-
metic in some cases, such as in the computa-
tion to find the degree-128 polynomial satisfied by
α = exp(8πφ2(1/32, 1/32)). Related computations in a
follow-up study required up to 50,000-digit arithmetic
[5]. The norm of the largest polynomials so uncovered
is large enough to cause some problems for current
computer algebra systems.

7 INTEGRALS ARISING IN THE STUDY OF
WIGNER ELECTRON SUMS

In this section, we report some new results on
“Wigner electron sums,” which are discussed in [31].

10

Throughout this section, Q(x) = Q(x1, . . . , xd) is a
positive definite quadratic form in d variables with
real coefficients and determinant ∆ > 0.

As proposed in [34, Chap. 7], [31] examined the
behavior of

σN (s) := αN (s)− βN (s)

as N →∞, where αN and βN are given by

αN (s) :=

N∑
n1=−N

· · ·
N∑

nd=−N

1

Q(n1, . . . , nd)s
, (10)

βN (s) :=

∫ N+1/2

−N−1/2
· · ·
∫ N+1/2

−N−1/2

dx1 · · · dxd
Q(x1, . . . , xd)s

.(11)

As usual, the summation in (10) is understood to
avoid the term corresponding to (n1, . . . , nd) =
(0, . . . , 0). If Re s > d/2, then αN (s) converges to the
Epstein zeta function α(s) = ZQ(s) as N → ∞. On
the other hand, each integral βN (s) is only defined
for Re s < d/2.

A priori it is therefore unclear, for any s, whether
the limit σ(s) := limN→∞ σN (s) should exist. In what
follows, we will write σ(s) for the limit. For more on
the physical background behind such sums, which
motivates the interest in the limit σ(s), we refer to
[31].

In the case d = 2, it was shown in [30, Theorem
1] that the limit σ(s) exists in the strip 0 < Re s < 1
and that it coincides therein with the analytic con-
tinuation of α(s). Further, in the case d = 3 with
Q(x) = x21 + x22 + x23, it was shown in [30, Theorem
3] that the limit σ(s) := limN→∞ σN (s) exists for
1/2 < Re s < 3/2 as well as for s = 1/2. However,
it was proven that σ(1/2)− π/6 = limε→0+ σ(1/2 + ε).
In other words, the limit σ(s) exhibits a jump discon-
tinuity at s = 1/2. It is therefore natural to ask in what
senses the phenomenon observed for the cubic lattice
when d = 3 extends both to higher dimensions and
to more general quadratic forms. Theorem 7.1 below
extends this result to arbitrary positive definite Q in
all dimensions.

7.1 Jump discontinuities in Wigner limits

As above, let Q(x) = QA(x) =
∑

16i,j6d aijxixj , with
A = (aij)16i,j6d symmetric and positive definite. Set
also B(s) = tr(A)A− 2(s+ 1)A2. Finally, define

V (s) = VQ(s) :=

∫
‖x‖∞=1

QB(s)(x)

QA(x)s+2
dλd−1, (12)

with λd−1 the induced (d − 1)-dimensional measure
on the faces.

Theorem 7.1 (General jump discontinuity [31]). Let Q
be an arbitrary positive definite quadratic form. Then the
limit σ(s) := limN→∞ σN (s) exists in the strip d/2−1 <

Re s < d/2 and for s = d/2−1. In the strip, σ(s) coincides
with the analytic continuation of α(s). On the other hand,

σ(d/2− 1) +
d/2− 1

24
V ′Q(d/2− 1)

= α(d/2− 1) = lim
ε→0+

σ(d/2− 1 + ε), (13)

with VQ as introduced in equation (12).

7.2 The behavior of V ′Q(d/2− 1)

We now examine the nature of V ′Q(d/2 − 1) in some-
what more detail. From the definition (12) we obtain
that

V ′Q(d/2− 1) = − 4 tr(A)

d
√

det(A)

πd/2

Γ(d/2)
(14)

−
∫
‖x‖∞=1

tr(A)QA(x)− dQA2(x)

QA(x)d/2+1
logQA(x)dλd−1.

The equality is a consequence of [31, Lemma 2.5].

Example 7.2 (Recovery of cubic jump). Let us demon-
strate that Theorem 7.1 reduces to the result given in
[31] in the cubic lattice case. In that case, A = I and
tr(A) = d, so that the integral in (14), involving the
logarithm, vanishes. Hence,

V ′(d/2− 1) = −4
πd/2

Γ(d/2)
,

in agreement with the value given in [31]. 3

In [31] the question was not settled of whether
V ′Q(d/2 − 1) can possibly vanish for some positive
definite quadratic form Q. However, a simple criterion
for V ′Q(d/2− 1) < 0 was given.

Proposition 7.3 ([31]). Let Q be a positive definite
quadratic form with

dQA2(x) 6 tr(A)QA(x) (15)

for all x with ‖x‖∞ = 1. Then V ′Q(d/2−1) < 0. The same
conclusion holds if ‘6’ is replaced with ‘>’ in (15).

Example 7.4 (Some non-cubic lattices). Consider the
case when A = Ap := I − pE, where E is the matrix
with all entries equal to 1. One easily checks that Ap
is positive definite if and only if p < 1/d. Hence, we
assume p < 1/d. We further observe that

QAp
(x) = ‖x‖22 − p

 d∑
j=1

xj

2

,

as well as A2
p = Ap(2−dp). Thus equipped, a brief

calculation reveals that

dQA2
p
(x)− tr(Ap)QAp(x)

= pd‖x‖22 − p [1− (d− 1)p]

 d∑
j=1

xj

2

.

11

Notice that, by Hölder’s inequality, d∑
j=1

xj

2

6 ‖x‖21 6 d‖x‖∞‖x‖22.

Assume further that p > 0 so that p [1− (d− 1)p] > 0.
We then find that, for all x with ‖x‖∞ = 1,

dQA2
p
(x)− tr(Ap)QAp

(x) > p2d(d− 1)‖x‖22 > 0.

By Proposition 7.3, we have thus shown that V ′Q(d/2−
1) < 0, with Q = QAp

, for all 0 6 p < 1/d. 3

Proposition 7.3 can fail comprehensively if its con-
ditions are not fully met:

Example 7.5 (Some scaled cubic lattices). Consider
the case when A = Ap := I + pD(a), where D(a) =
D(a1, . . . , ad) is a diagonal matrix with t := tr(D) =∑d
k=1 ak and without loss p ≥ 0. Now Ap is positive

definite if and only if pak + 1 > 0 for all 1 ≤ k ≤ d.
Suppose that t = tr(D) = 0. Then tr(Ap) = d, Also
A2
p = I + 2pD(a) + p2D(a21, . . . , a

2
k). Thence,

dQA2
p
(x)− tr(Ap)QAp

(x) = pd

d∑
k=1

ak(1 + pak)x2k,

which must change signs on the sphere, since ak does,
and so Proposition 7.3 does not apply. 3

On the basis of our analysis, motivated by cases
such as Examples 7.4 and 7.5 where Proposition 7.3
does not apply, we were led to the conjecture below.

Conjecture 7.6 (Negative jumps). For all dimensions d
and all positive definite forms Q, one has V ′(d/2−1) < 0.

7.3 Numerical exploration of V ′Q(d/2− 1)

In an attempt to better understand Conjecture 7.6, we
observed that the integral in (14) decomposes as 2d
integrals of the form

vi(±) :=∫
‖x‖∞ ≤ 1,
xi = ±1

dQA2(x)− tr(A)QA(x)

QA(x)d/2+1
logQA(x) dλd−1

for 1 ≤ i ≤ d over (d − 1)-dimensional hypercubes.
The task at hand is to explore whether the inequality

d∑
i=1

vi(+) +

d∑
i=1

vi(−) <
4 tr(A)

d
√

det(A)

πd/2

Γ(d/2)
(16)

can ever fail. As the dimension grows, the cost of the
required numerical integration increases substantially,
as noted above in Section 5.1. Thus, we decided to
computationally examine whether the ratio L/R =
LHS/RHS in (16) is always less than 1 for d = 3, which
is the physically most meaningful case of Conjecture
7.6.

7.4 Numerical evidence for the Conjecture

In our tests of Conjecture 7.6, we programmed both
sides of (16) using double-double arithmetic with
the QD software package [52]. This permitted highly
accurate analysis, which is essential since, as we
discovered, the most interesting regions of the space
also correspond to nearly singular matrices and cor-
respondingly difficult integrands.

In particular, we generated a set of 1000 symmetric
positive definite 3 × 3 test matrices, each of which
was constructed as A = ODO∗, where O is the
orthonormalization of a pseudorandom 3 × 3 matrix
with integer entries chosen in [−1000, 1000], and D
is a diagonal matrix with integer entries in [1, 1000].
Note that the diagonal entries of D are thus also
the eigenvalues of the test matrix A = ODO∗. The
resulting 2-D integrals implicit in (16) were computed
using the tanh-sinh quadrature scheme [23], [71], with
sufficiently large numbers of quadrature points to
ensure more than 10-digit accuracy in the results.

We found that the ratio L/R is indeed less than one
in all cases, but that it is close to one for those matrices
whose eigenvalues have two very small entries and
one large entry. For example, a test matrix A with
eigenvalues (1, 5, 987) produced the ratio 0.987901 . . .,
and a test matrix A with eigenvalues (1, 1, 999) pro-
duced the ratio 0.993626

Finally, we explored the case where the O matrix is
generated pseudorandomly as above, but the eigen-
values in D (and thus the eigenvalues of A) are set to
(1, 1, 10n), for n = 1, 2, · · · , 6. The resulting L/R ratios
are shown in the table below, truncated to 8 digits,
with quadrature levels and run times in seconds.
Here the column labeled “quad. level” indicates the
quadrature level Q. The number of quadrature points,
approximately 8× 2Q in each of the two dimensions,
is a index of the computational effort required.

All of these tests confirm that indeed the ratio
L/R < 1, although evidently it can be arbitrarily close
to one with nearly singular matrices. Thus, we see no
reason to reject Conjecture 7.6.

quad. run
n L/R ratio level time
1 0.50270699 6 3.28
2 0.90761214 6 3.28
3 0.98835424 7 13.11
4 0.99877007 8 52.30
5 0.99987615 10 528.98
6 0.99998760 12 8360.91

In future studies, we will attempt to test Conjecture
7.6 in four dimensions. These studies will likely re-
quire highly parallel computation in addition to high-
precision arithmetic.

12

8 REQUIREMENTS FOR FUTURE HIGH-
PRECISION ARITHMETIC SOFTWARE

It is clear from the preceding survey of applications
that high-precision arithmetic facilities are indispens-
able for a growing body of numerically demanding
applications spanning numerous disciplines, ranging
from dynamical systems and experimental mathemat-
ics to computational physics.

Software tools for performing such computations,
and tools for converting scientific codes to use high-
precision arithmetic, are in general more efficient,
useable and robust than they were in the past. Yet
it is clear, from the examples we have presented and
other experiences, that the presently available tools
still have a long ways to go.

Even commercial packages, which in general are
significantly more complete and robust than open
software packages, could use some improvements.
For example, a recent study by the present authors
and Richard Crandall of Mordell-Tornheim-Witten
sums, which arise in mathematical physics, required
numerical values of derivatives of polylogarithms
with respect to the order. Our version of Maple did
not offer this functionality, and while our version of
Mathematica attempted to evaluate these derivatives,
the execution was rather slow and did not return the
expected number of correct digits [10].

Here are some specific areas of needed improve-
ment.

8.1 High-precision and emerging architectures
The scientific computing world is moving very
rapidly into parallel computing, including multi-
core computing [77]. It is possible to perform high-
precision computations in parallel by utilizing mes-
sage passing interface (MPI) software at the appli-
cation level (rather than attempting to parallelize
individual high-precision operations). MPI employs a
“shared none” environment that avoids many diffi-
culties. Indeed, numerous high-precision applications
have been performed on highly parallel systems using
MPI, including the Ising study mentioned in Section
5.1 and a numerical integration reported in [7].

But on modern multicore systems, parallel pro-
cessing is more efficiently performed using a shared
memory, threaded environment such as OpenMP [77]
within a single node, even if MPI is employed for par-
allelism between nodes. Computations that use an en-
vironment such as OpenMP must be entirely “thread-
safe,” which means, among other things, that no
shared variables are actively written to, or otherwise
there may be difficulties with processors stepping
on each other during parallel execution. Employing
“locks” and the like may remedy such difficulties, but
only by reducing parallel efficiency.

As it turns out, few if any high-precision software
packages currently available are entirely thread-safe

(or, at the least, it is not clear from the available
documentation that they are thread-safe). Thus it is
not possible to execute parallel programs using these
high-precision packages in the most efficient parallel
environments on multicore systems.

Another important development here is the recent
emergence of graphics processing units (GPUs) and
their usage for high-performance computing appli-
cations [77]. At the time of this writing, four of the
top ten computer systems on the Top 500 list of the
world’s most powerful supercomputers incorporate
GPUs [72]. Thus it is increasingly clear that future
high-precision packages, whether they be integrated
into commercial software or as augmentations to con-
ventional programming environments, must be able
to run, as an option, on GPU hardware.

8.2 Precision level and transcendental support
As we noted above, some emerging applications re-
quire prodigious levels of numeric precision—10,000,
50,000 or more digits. Thus future facilities for high-
precision arithmetic must employ advanced data
structures and algorithms, such as FFT-based multipli-
cation, that are efficient for extremely high-precision
computation.

Along this line, it is no longer sufficient to simply
provide basic arithmetic operations, at any precision
level, since a surprisingly wide range of transcenden-
tal and special functions have arisen in recent studies.
This is one area where commercial packages such
as Maple and Mathematica generally shine, but others
generally fall short. Modern high-precision packages
should support the following:

1) Basic transcendentals—exp, log, sin, cos, tan,
hyperbolic functions—and the corresponding in-
verse functions [58, Sec. 4].

2) Gamma, digamma, polygamma, incomplete
gamma, beta and incomplete beta functions [58,
Sec. 5, 8].

3) Riemann zeta function, polylogarithms and
Dirichlet L-functions [58, Sec. 25].

4) Bessel functions (first, second and third kinds,
modified, etc.) [58, Sec. 10].

5) Hypergeometric functions [58, Sec. 15].
6) Airy functions [58, Sec. 9].
7) Elliptic integral functions [58, Sec. 19].
8) Jacobian elliptic functions and Weierstrass ellip-

tic/modular functions [58, Sec. 22, 23].
9) Theta functions [58, Sec. 20, 21].
These functions should be implemented with the

best available algorithms for different argument
ranges and precision levels, and should also sup-
port both real and complex arguments where pos-
sible. Recent research gives hope in this arena—see,
for instance [32, pp. 215–245], [38], [41], [58]—but
these published schemes need to be implemented in
publicly available high-precision computing environ-
ments.

13

8.3 Reproducibility
As we noted above in Section 1, reproducibility is
increasingly important in scientific computing. As is
well known, architectural differences, subtle changes
in the order in which compilers generate instructions
and even changes to the processor count can alter
results, and round-off errors inevitably accumulate.
Many of these difficulties stem from the fact that
floating-point arithmetic operations (standard or high-
precision) are not associative: (a+b)+c is not guaran-
teed to be the same as a+(b+c). They are further exac-
erbated in a parallel environment, where deterministic
order of execution often cannot be guaranteed.

One benefit of high-precision arithmetic is to en-
hance reproducibility of results, since it can dramat-
ically reduce floating-point roundoff error. Some ex-
amples were mentioned in Section 1. In most cases,
by appropriately adjusting the level of precision, high
levels of reproducibility can be achieved.

Some researchers are investigating facilities to guar-
antee bit-for-bit reproducibility in IEEE floating-point
arithmetic across different platforms, although for the
time they feature only partial reproducibility [39].
Thus at some point similar facilities may be provided
in high-precision computing systems as well.

However, bit-for-bit reproducibility, in addition to
possibly slowing down execution, has the potential
downside of masking serious numerical difficulties.
Often numerical difficulties in a code only come to
light when a minor code change or a run on a dif-
ferent number of processors produces a surprisingly
large change in the results. Ensuring bit-for-bit repro-
ducibility might hide such problems from the user.

In any event, while bit-for-bit reproducibility may
eventually be realized in high-precision computing,
it is not likely to appear anytime soon. Thus for the
foreseeable future, users of these libraries must be
willing to accept some level of non-reproducibility
and manage their computations accordingly.

REFERENCES
[1] A. Abad, R. Barrio, F. Blesa and M. Rodriguez, “TIDES: a

Taylor series Integrator for Differential EquationS,” ACM
Trans. on Math. Software, to appear (2012). Software available
online at http:gme.unizar.es/software/tides.

[2] A. Abad, R. Barrio, and A. Dena, “Computing periodic orbits
with arbitrary precision,” Phys. Rev. E, 84 (2011), 016701.

[3] D. H. Bailey, “A compendium of BBP-type formulas,” Apr.
2011, available at http:
//www.davidhbailey.com/dhbpapers/bbp-formulas.pdf. An
interactive database is online at
http://bbp.carma.newcastle.edu.au.

[4] D. H. Bailey, “Resolving numerical anomalies in scientific
computation,” Apr. 2015, available at http:
//www.davidhbailey.com/dhbpapers/numerical-bugs.pdf.

[5] D. H. Bailey and J. M. Borwein, “Compressed lattice sums
arising from the Poisson equation: Dedicated to Professor
Hari Sirvastava,” Boundary Value Problems, 75 (2013), DOI:
10.1186/1687-2770-2013-75, http:
//www.boundaryvalueproblems.com/content/2013/1/75.

[6] D. H. Bailey and J. M. Borwein, “Experimental mathematics:
Examples, methods and implications,” Notices of the AMS, 52
(May 2005), 502-514.

[7] D. H. Bailey and J. M. Borwein, “Highly parallel,
high-precision numerical integration,” Apr. 2008, available at
http://www.davidhbailey.com/dhbpapers/quadparallel.pdf.

[8] D. H. Bailey and J. M. Borwein, “Hand-to-hand combat with
thousand-digit integrals,” J. of Computational Science, 3 (2012),
77–86.

[9] D. H. Bailey and J. M. Borwein, “Nonnormality of Stoneham
constants,” Ramanujan J., 29 (2012), 409-422; DOI
10.1007/s11139-012-9417-3.

[10] D. H. Bailey, J. M. Borwein and R. E. Crandall, “Computation
and theory of extended Mordell-Tornheim-Witten sums,”
Mathematics of Computation, to appear, Jul 2012,
http://www.davidhbailey.com/dhbpapers/BBC.pdf.

[11] D. H. Bailey, J. M. Borwein, R. E. Crandall and J. Zucker,
“Lattice sums arising from the Poisson equation,” J. Physics
A: Math. and Theor., 46 (2013), 115201.

[12] D. H. Bailey, R. Barrio and J. M. Borwein, “High-precision
computation: Mathematical physics and dynamics,” Appl.
Math. and Computation, 218 (2012), 10106–10121.

[13] D. H. Bailey, P. B. Borwein and S. Plouffe, “On the rapid
computation of various polylogarithmic constants,” Math. of
Computation, 66 (Apr 1997), 903–913.

[14] D. H. Bailey, J. M. Borwein and R. E. Crandall, “Integrals of
the Ising class,” J. Physics A: Math. and Gen., 39 (2006),
12271–12302.

[15] D. H. Bailey, D. Borwein, J. M. Borwein and R. E. Crandall,
“Hypergeometric forms for Ising-class integrals,” Exp.
Mathematics, 16 (2007), 257–276.

[16] D. H. Bailey, J. M. Borwein, D. M. Broadhurst and L. Glasser,
“Elliptic integral representation of Bessel moments,” J. Phys.
A: Math. and Theor., 41 (2008), 5203–5231. DOI 205203 (IoP
Select).

[17] D. H. Bailey, J. M. Borwein, A. Mattingly and G. Wightwick,
“The computation of previously inaccessible digits of π2 and
Catalan’s constant,” Notices of the AMS, 60 (2013), no. 7,
844–854.

[18] D. H. Bailey, J. M. Borwein and V. Stodden, “Set the default
to ‘open’,” Notices of the AMS, 60 (6) (2013), 679–680.

[19] D. H. Bailey and D. Broadhurst, “Parallel integer relation
detection: Techniques and applications,” Math. of
Computation, 70 (2000), 1719–1736.

[20] D. H. Bailey and R. E. Crandall, “On the random character
of fundamental constant expansions,” Exp. Mathematics, 10
(2001), 175–190.

[21] D. H. Bailey and R. E. Crandall, “Random generators and
normal numbers,” Exp. Mathematics, 11 (2004), 527–546.

[22] D. H. Bailey and A. M. Frolov, “Universal variational
expansion for high-precision bound-state calculations in
three-body systems. Applications to weakly-bound, adiabatic
and two-shell cluster systems,” J. Physics B, 35 (2002),
42870–4298.

[23] D. H. Bailey, X. S. Li and K. Jeyabalan, “A comparison of
three high-precision quadrature schemes,” Exp. Mathematics,
14 (2005), 317–329.

[24] D. H. Bailey, X. S. Li and B. Thompson, “ARPREC: An
arbitrary precision computation package,” Sep 2002,
http://www.davidhbailey.com/dhbpapers/arprec.pdf.

[25] D. H. Bailey and M. Misiurewicz, “A strong hot spot
theorem,” Proc. of the AMS, 134 (2006), 2495–2501.

[26] R. Barrio, “Performance of the Taylor series method for
ODEs/DAEs,” Appl. Math. Comput., 163 (2005), 525–545.

[27] R. Barrio, “Sensitivity analysis of ODEs/DAEs using the
Taylor series method,” SIAM J. Sci. Computing, 27 (2006),
1929–1947.

[28] R. Barrio, F. Blesa, M. Lara, “VSVO formulation of the Taylor
method for the numerical solution of ODEs,” Comput. Math.
Appl., 50 (2005), 93–111.

[29] C. F. Berger, Z. Bern, L. J. Dixon, F. Febres Cordero, D. Forde,
H. Ita, D. A. Kosower and D. Maitre, “An automated
implementation of on-shell methods for one-loop
amplitudes,” Phys. Rev. D, 78 (2008), 036003,
http://arxiv.org/abs/0803.4180.

[30] D. Borwein, J. M. Borwein, and R. Shail, “Analysis of certain
lattice sums,” J. Math. Anal. and Appl., 143 (1989), 126–137.

[31] D. Borwein, J. M. Borwein, and A. Straub, “On lattice sums
and Wigner limits,” preprint, July 2013.

14

[32] J. M. Borwein and D. H. Bailey, Mathematics by Experiment:
Plausible Reasoning in the 21st Century, A.K. Peters, Natick,
MA, second edition, 2008.

[33] J. M. Borwein and D. H. Bailey, Experimentation in
Mathematics: Computational Paths to Discovery, A.K. Peters,
Natick, MA, 2004.

[34] J. M. Borwein, L. Glasser, R. McPhedran, J. G. Wan, and
I. J. Zucker, Lattice Sums: Then and Now, Cambridge
University Press, 2013.

[35] J. M. Borwein, A. Straub, and J. Wan, “Three-step and
four-step random walk integrals,” Exp. Mathematics, 22
(2013), 1–14.

[36] R. P. Brent and P. Zimmermann, Modern Computer Arithmetic,
Cambridge Univ. Press, 2010.

[37] F. Calvo et al., “Evidence for Low-Temperature Melting of
Mercury owing to Relativity”, Angew. Chem. Intl. Ed. Engl.
(2013) doi: 0.1002/anie.201302742.

[38] S. Chevillard and M. Mezzarobba, “Multiple precision
evaluation of the Airy Ai function with reduced
cancellation,” Proceedings of the 21st IEEE Symposium on
Computer Arithmetic, IEEE Computer Society, 2013.

[39] M. J. Corden and D. Kreitzer, “Consistency of floating-point
results using the Intel compiler, or why doesn’t my
application always give the same answer,” Intel Corporation,
2010, http://software.intel.com/sites/default/files/article/
164389/fp-consistency-102511.pdf.

[40] G. Corliss and Y. F. Chang, “Solving ordinary differential
equations using Taylor series,” ACM Trans. Math. Software, 8
(1982), 114–144.

[41] R. E. Crandall, “Unified algorithms for polylogarithm,
L-series and zeta variants,” Mar. 2012,
http://www.perfscipress.com/papers/UniversalTOC25.pdf.

[42] M. Czakon, “Tops from light quarks: Full mass dependence
at two-Loops in QCD,” Phys. Lett. B, vol. 664 (2008), 307,
http://arxiv.org/abs/0803.1400.

[43] J. Demmel and P. Koev, “The accurate and efficient solution
of a totally positive generalized Vandermonde linear
system,” SIAM J. of Matrix Analysis Appl., 27 (2005), 145–152.

[44] J. Dongarra, “LAPACK,” http://www.netlib.org/lapack.
[45] J. Dongarra, “LINPACK,” http://www.netlib.org/linpack.
[46] R. K. Ellis, W. T. Giele, Z. Kunszt, K. Melnikov and

G. Zanderighi, “One-loop amplitudes for W+3 jet production
in hadron collisions,” manuscript, 15 Oct 2008,
http://arXiv.org/abs/0810.2762.

[47] H. R. P. Ferguson, D. H. Bailey and S. Arno, “Analysis of
PSLQ, An Integer Relation Finding Algorithm,” Math. of
Computation, 68, no. 225 (Jan 1999), 351–369.

[48] T. Ferris, Coming of Age in the Milky Way, HarperCollins,
New York, 2003.

[49] A. M. Frolov and D. H. Bailey, “Highly accurate evaluation
of the few-body auxiliary functions and four-body integrals,”
J. Physics B, 36 (2003), 1857–1867.

[50] E. Hairer, S. Nørsett and G. Wanner, Solving ordinary
differential equations. I. Nonstiff problems, second edition,
Springer Series in Computational Mathematics, vol. 8,
Springer-Verlag, Berlin, 1993.

[51] Y. He and C. Ding, “Using accurate arithmetics to improve
numerical reproducibility and stability in parallel
applications,” J. Supercomputing, 18 (Mar 2001), 259–277.

[52] Y. Hida, X. S. Li and D. H. Bailey, “Algorithms for
Quad-Double Precision Floating Point Arithmetic,” Proc. of
the 15th IEEE Symposium on Computer Arithmetic, IEEE
Computer Society, 2001.

[53] E. Karrels, “Computing digits of pi with CUDA,” 14 Mar
2013, available at http://www.karrels.org/pi.

[54] D. E. Knuth, The Art of Computer Programming: Seminumerical
Algorithms, Addison-Wesley, third edition, 1998.

[55] G. Lake, T. Quinn and D. C. Richardson, “From Sir Isaac to
the Sloan survey: Calculating the structure and chaos due to
gravity in the universe,” Proc. of the 8th ACM-SIAM
Symposium on Discrete Algorithms, SIAM, Philadelphia, 1997,
1–10.

[56] S. K. Lucas and H. A. Stone, “Evaluating infinite integrals
involving Bessel functions of arbitrary order,” J. Comp. and
Appl. Math., 64 (1995), 217–231.

[57] E. Lorenz, “Deterministic nonperiodic flow,” J. Atmospheric
Sci., 20 (1963), 130–141.

[58] NIST Digital Library of Mathematical Functions, version 1.0.6
(May 2013), http://dlmf.nist.gov.

[59] G. Ossola, C. G. Papadopoulos and R. Pittau, “CutTools: A
program implementing the OPP reduction method to
compute one-loop amplitudes,” J. High-Energy Phys., 0803
(2008), 042, http://arxiv.org/abs/0711.3596.

[60] W. H. Press, S. A. Eukolsky, W. T. Vetterling and
B. P. Flannery, Numerical Recipes: The Art of Scientific
Computing, 3rd edition, Cambridge University Press, 2007.

[61] R. W. Robey, J. M. Robey and R. Aulwes, “In search of
numerical consistency in parallel programming,” Parallel
Computing, 37 (2011), 217–219.

[62] M. Rogers, J. G. Wan, and I. J. Zucker, “Moments of elliptic
integrals and critical L-values,” 2013, submitted, 15 pages.

[63] C. Rubio-Gonzalez, C. Nguyen, H. D. Nguyen, J. Demmel,
W. Kahan, K. Sen, D. H. Bailey and C. Iancu, “Precimonious:
Tuning assistant for floating-point precision,” Proc. of SC13,
to appear, May 2013, http:
//www.davidhbailey.com/dhbpapers/precimonious.pdf.

[64] J. R. Shewchuk, “Adaptive precision floating-point arithmetic
and fast robust geometric predicates,” Discr. and Comp.
Geometry, 18 (1997), 305–363.

[65] A. Sidi, “The numerical evaluation of very oscillatory infinite
integrals by extrapolation,” Math. of Computation, 38 (1982),
517–529.

[66] A. Sidi, “A user-friendly extrapolation method for oscillatory
infinite integrals,” Math. of Computation, 51 (1988), 249–266.

[67] A. Sidi, “A user-friendly extrapolation method for
computing infinite range integrals of products of oscillatory
functions,” IMA J. Numer. Anal., 32 (2012), 6020–631.

[68] C. Simó, “Global dynamics and fast indicators,” in Global
Analysis of Dynamical Systems, 373–389, Inst. Phys., Bristol,
2001.

[69] V. Stodden, J. M. Borwein and D. H. Bailey, “Publishing
Standards for Computational Science:‘Setting the Default to
Reproducible’,” SIAM News, 46 no. 5 (June 2013), 4–6,
available at http://www.siam.org/news/news.php?id=2078.

[70] V. Stodden, D. H. Bailey, J. M. Borwein, R. J. LeVeque,
W. Rider and W. Stein, “Setting the default to reproducible:
Reproducibility in computational and experimental
mathematics,” Jan. 2013, available at
http://www.davidhbailey.com/dhbpapers/icerm-report.pdf.

[71] H. Takahasi and M. Mori, “Double exponential formulas for
numerical integration,” Pub. RIMS, Kyoto University, 9
(1974), 721–741.

[72] “June 2013 Top 500 list,” June 2013, available at
http://top500.org/lists/2013/06.

[73] D. Viswanath, “The Lindstedt-Poincaré technique as an
algorithm for computing periodic orbits,” SIAM Review, 43
(2001), 478–495.

[74] D. Viswanath, “The fractal property of the Lorenz attractor,”
J. Phys. D, 190 (2004), 115–128.

[75] D. Viswanath and S. Şahutǒglu, “Complex singularities and
the Lorenz attractor,” SIAM Review, 52 (2010), 294–314.

[76] J. Wan, “Moments of products of elliptic integrals,” Adv. in
Appl. Math. 48 (2012), no. 1, 121-141.

[77] S. W. Williams and D. H. Bailey, “Parallel computer
architecture,” in David H. Bailey, Robert F. Lucas and
Samuel W. Williams, ed., Performance Tuning of Scientific
Applications, CRC Press, Boca Raton, FL, 2011, 11–33.

[78] Z.-C. Yan and G. W. F. Drake, “Bethe logarithm and QED
shift for Lithium,” Phys. Rev. Letters, 81 (2003), 774–777.

[79] T. Zhang, Z.-C. Yan and G. W. F. Drake, “QED corrections of
O(mc2α7 lnα) to the fine structure splittings of Helium and
He-Like ions,” Physical Review Letters, 77 (1994), 1715–1718.

