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Abstract

Numerous research studies have arisen, particularly in mathemat-
ical physics and experimental mathematics, that require extremely
high numeric precision — hundreds or thousands of digits in some
cases. This paper describes a new arbitrary precision software pack-
age (“MPFUN2020”) to support such applications. It comes in two
versions: a self-contained all-Fortran version that is easy to install,
and a version based on the MPFR package that runs faster although
it is more complicated to install.

Both versions feature: (a) a completely thread-safe design, so user
codes can be converted for parallel execution at the application level;
(b) a full-featured high-level Fortran interface, so that most applica-
tions can be converted to multiprecision with only minor changes to
source code; (c) full support for both real and complex datatypes; (d)
numerous transcendental and special functions; (e) run-time check-
ing to guard against problems with converting double precision data;
(f) a medium precision datatype that improves performance on large
variable precision applications; and (g) interoperability, so that with
a simple restriction, application codes written for one version can be
run using the other without any code changes.
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1 Applications of high-precision computation

For many scientific calculations, particularly those that employ empirical
data, IEEE 32-bit floating-point arithmetic is sufficiently accurate, and is
preferred since it saves memory, run time and energy usage. For other cal-
culations, 64-bit floating-point arithmetic is required to produce results of
sufficient accuracy; still others switch between 32-bit and 64-bit.

Another group of applications, particularly in the fields of mathematical
physics and experimental mathematics, require even higher precision — tens,
hundreds or even thousands of digits:

1. Supernova simulations (32–64 digits).

2. Optimization problems in biology and other fields (32–64 digits).

3. Coulomb n-body atomic system simulations (32–120 digits).

4. Electromagnetic scattering theory (32–100 digits).

5. The Taylor algorithm for ODEs (100–600 digits).

6. Ising integrals from mathematical physics (100–1000 digits).

7. Problems in experimental mathematics (100–50,000 digits and higher).

These applications are described in greater detail in [7, 5], which provides
detailed references. Here is a brief overview of several key applications:

1.1 The PSLQ integer relation algorithm

Very high-precision floating-point arithmetic is now considered an indispens-
able tool in experimental mathematics and mathematical physics [7]. Many
of these computations involve variants of Ferguson’s PSLQ integer relation
detection algorithm [25, 15]. Suppose one is given an n-long vector (xi) of
real or complex numbers (presented as a vector of high-precision values). The
PSLQ algorithm attempts to find nontrivial integer coefficients (ai), if they
exist, such that

a1x1 + a2x2 + · · ·+ anxn = 0

to available precision. Some researchers adapt variations of the Lenstra-
Lenstra-Lovasz (LLL) lattice basis reduction algorithm [32], or the “HJLS”
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algorithm, which is based on LLL, for integer relation detection [21]. Whichever
algorithm is used, integer relation detection requires very high precision—at
least n ·maxi log10 |ai| digits, or else the true relation will be lost in a sea of
numerical artifacts.

1.2 High-precision numerical integration

One of the most fruitful applications of the experimental methodology and
the PSLQ integer relation algorithm has been to identify classes of definite
integrals, based on very high-precision numerical values, in terms of simple
analytic expressions.

These studies typically employ either Gaussian quadrature or the tanh-
sinh quadrature scheme of Takahasi and Mori [38, 4]. The tanh-sinh quadra-
ture algorithm approximates the integral of a function on (−1, 1) as∫ 1

−1

f(x) dx ≈ h
N∑

j=−N

wjf(xj), (1)

where the abscissas xj and weights wj are given by

xj = tanh (π/2 · sinh(hj))

wj = π/2 · cosh(hj)/ cosh (π/2 · sinh(hj))2 , (2)

and where N is chosen large enough that summation terms in (1) beyond N
(positive and negative) are smaller than the “epsilon” of the numeric precision
being used. Full details are given in [4]. An overview of applications of high-
precision integration in experimental mathematics is given in [9].

1.3 Ising integrals

In one study, tanh-sinh quadrature and PSLQ were employed to study the
following classes of integrals [11]. The Cn are connected to quantum field
theory, the Dn integrals arise in the Ising theory of mathematical physics,
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while the En integrands are derived from Dn:

Cn =
4

n!

∫ ∞
0

· · ·
∫ ∞

0

1(∑n
j=1(uj + 1/uj)

)2

du1

u1

· · · dun
un

Dn =
4

n!

∫ ∞
0

· · ·
∫ ∞

0

∏
i<j

(
ui−uj
ui+uj

)2

(∑n
j=1(uj + 1/uj)

)2

du1

u1

· · · dun
un

En = 2

∫ 1

0

· · ·
∫ 1

0

( ∏
1≤j<k≤n

uk − uj
uk + uj

)2

dt2 dt3 · · · dtn.

In the last line uk =
∏k

i=1 ti.
In general, it is very difficult to compute high-precision numerical values of

n-dimensional integrals such as these. But as it turn out, the Cn integrals can
be converted to one-dimensional integrals, which are amenable to evaluation
with the tanh-sinh scheme:

Cn =
2n

n!

∫ ∞
0

pKn
0 (p) dp.

Here K0 is the modified Bessel function (see Section 7.4). 1000-digit values of
these sufficed to identify the first few instances of Cn in terms of well-known
constants. For example, C4 = 7ζ(3)/12, where ζ denotes the Riemann zeta
function. For larger n, it quickly became clear that the Cn approach the limit

lim
n→∞

Cn = 0.630473503374386796122040192710 . . . .

This numerical value was quickly identified, using the Inverse Symbolic Cal-
culator 2.0 (an online tool that unfortunately is no longer available), as

lim
n→∞

Cn = 2e−2γ,

where γ is Euler’s constant. This identity was then proven in [11].
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Other specific results found in this study include the following:

D3 = 8 + 4π2/3− 27 L−3(2)

D4 = 4π2/9− 1/6− 7ζ(3)/2

E2 = 6− 8 log 2

E3 = 10− 2π2 − 8 log 2 + 32 log2 2

E4 = 22− 82ζ(3)− 24 log 2 + 176 log2 2− 256(log3 2)/3

+16π2 log 2− 22π2/3

E5 = 42− 1984 Li4(1/2) + 189π4/10− 74ζ(3)− 1272ζ(3) log 2 + 40π2 log2 2

−62π2/3 + 40(π2 log 2)/3 + 88 log4 2 + 464 log2 2− 40 log 2,

where ζ is the Riemann zeta function and Lin(x) is the polylogarithm function
(see Section 7.4).

E5 was computed by first reducing it to a 3-D integral of a 60-line in-
tegrand, which was evaluated using tanh-sinh quadrature to 250-digit arith-
metic using over 1000 CPU-hours on a highly parallel system. The PSLQ
calculation required only seconds to produce the relation above. This formula
remained a “numerical conjecture” for several years, but was proven in March
2014 by Erik Panzer, who mentioned that he relied on these computational
results to guide his research [35].

1.4 Algebraic numbers in Poisson potential functions

The Poisson potential function arises in several contexts of mathematical
physics and engineering, including the analysis of crystal structures and even
the sharpening of photographic images. In two recent studies [13, 12], re-
searchers explored a simple two-dimensional instance:

φ2(x, y) =
1

π2

∑
m,n odd

cos(mπx) cos(nπy)

m2 + n2
. (3)

After detailed numerical experimentation, these researchers discovered and
then proved the remarkable fact that when x and y are rational,

φ2(x, y) =
1

π
log β(x, y), (4)

where β(x, y) is an algebraic number, namely the root of an algebraic equation
with integer coefficients of some degree m.
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These experiments computed α = (β(x, y))8 = exp(8πφ2(x, y)), using
some rapidly convergent formulas found in [13], for various simple rationals
x and y. Then the vector (1, α, α2, · · · , αm) was input to a program imple-
menting the three-level multipair PSLQ program [15]. When successful, the
program returned the vector of integer coefficients (a0, a1, a2, · · · , am) of a
polynomial satisfied by α as output. Table 1 shows some examples [13].

s Minimal polynomial corresponding to x = y = 1/s:
5 1 + 52α− 26α2 − 12α3 + α4

6 1− 28α+ 6α2 − 28α3 + α4

7 −1− 196α+ 1302α2 − 14756α3 + 15673α4 + 42168α5 − 111916α6 + 82264α7

−35231α8 + 19852α9 − 2954α10 − 308α11 + 7α12

8 1− 88α+ 92α2 − 872α3 + 1990α4 − 872α5 + 92α6 − 88α7 + α8

9 −1− 534α+ 10923α2 − 342864α3 + 2304684α4 − 7820712α5 + 13729068α6

−22321584α7 + 39775986α8 − 44431044α9 + 19899882α10 + 3546576α11

−8458020α12 + 4009176α13 − 273348α14 + 121392α15

−11385α16 − 342α17 + 3α18

10 1− 216α+ 860α2 − 744α3 + 454α4 − 744α5 + 860α6 − 216α7 + α8

Table 1: Sample of polynomials produced in earlier study [13].

Using this and other data, Jason Kimberley of the University of Newcas-
tle, Australia, conjectured a formula that gives the degree m as a function
of s [13]. These computations required prodigiously high precision (up to
10,000 digits) and very long run times.

In a subsequent study [14], the present author and three other researchers
extended these studies, confirming Kimberley’s formula for all 10 ≤ s ≤ 40
and also for s = 42, 44, 46, 48, 50, 52, 60 and 64. These runs, which required
precision levels up to 64,000 digits, were facilitated by an improved PSLQ
code, the faster MPFUN2015 package described below in Section 2, as well
as parallel execution facilitated by the thread-safe feature of this package.
Examination of these results led to additional discoveries, and ultimately to
a full proof of Kimberley’s conjecture, at least for the special case x = y = 1/s
for integer s, as well as other facts about these curious polynomials, such as
the fact that when s is even, the polynomials for the case x = y = 1/s are
palindromic (left-to-right symmetric) [14].

In two more recent studies [2, 3], these results were further extended, using
the arbitrary precision package described in this paper, to include the vastly
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larger class of rationals x = p/s and y = q/s, for 1 ≤ p, q < s/2 ≤ 38, and also
for s = 40, 42 and 50. These computations revealed that Kimberley’s formula
does not give the correct degree for the larger class, but that a generalization
of Kimberley’s rule does hold. Two other new general features of these
polynomials were also identified. See [3] for these results and additional
details.

2 Current high-precision software

By far the most common form of extra-precision arithmetic is roughly twice
the level of standard 64-bit IEEE floating-point arithmetic. One option is
the IEEE standard for 128-bit binary floating-point arithmetic, with 113
mantissa bits; sadly it is not yet widely implemented in hardware, although
it is supported, in software, by some compilers. Another option for this
level of precision is “double-double” arithmetic (approximately 31 digits),
which consists of two 64-bit IEEE floats, or even quad-double arithmetic
(approximately 62 digits), which consists of four IEEE 64-bit floats (see the
QD package in the list below) [30].

For higher-levels of precision, software packages typically represent a high-
precision datum as a string of floats or integers, where the first few words
contain bookkeeping information and the binary exponent, and subsequent
words contain the mantissa.

Software for performing high-precision arithmetic has been available for
quite some time, for example in the commercial packages Mathematica and
Maple, but until recently those using standard languages for high-performance
computing, such as C, C++ or Fortran, often found necessary to rewrite their
applications, replacing each arithmetic operation with a subroutine call to a
custom-coded library. Today there are several freely available high-precision
software packages for high-precision computing, and even some high-level
language interfaces that make code conversions relatively painless:

• ARPREC: Supports arbitrary precision integer, real, complex and tran-
scendental functions, with high-level C++ and Fortran-90 interfaces;
available at https://www.davidhbailey.com/dhbsoftware/.

• CLN: Supports arbitrary precision integer, real, complex and transcen-
dental functions in C++; available at http://www.ginac.de/CLN.
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• GMP: Supports low-level high-precision integer, rational and floating-
point calculations; available at http://gmplib.org.

• Julia: High-level programming environment incorporating GMP and
MPFR; available at http://julialang.org.

• MPFR: Supports (at a low level) multiple-precision floating-point com-
putations with correct rounding, based on GMP; includes numerous
algebraic and transcendental functions, and a thread-safe build option;
very fast timings; available at http://www.mpfr.org.

• MPFR++: High-level C++ interface to MPFR (although currently
available version is not up-to-date with MPFR); available at http:

//perso.ens-lyon.fr/nathalie.revol/software.html.

• MPFR C++: High-level C++ interface to MPFR with a thread-safe
option; available at http://www.holoborodko.com/pavel/mpfr.

• mpmath: Python library for arbitrary precision floating-point arith-
metic, with transcendentals; available at https://code.google.com/

p/mpmath.

• NTL: C++ library for arbitrary precision integer and floating-point
arithmetic; available at http://www.shoup.net/ntl.

• Pari/GP: Computer algebra system including high-precision arithmetic
and transcendental functions; available at http://pari.math.u-bordeaux.
fr.

• QD: Supports “double-double” (approx. 31 digits) and “quad-double”
(approx. 62 digits) arithmetic, with transcendental functions; includes
high-level interfaces for C++ and Fortran-90; available at https://

www.davidhbailey.com/dhbsoftware/.

• Sage: Open-source symbolic computing system including high-precision
facilities; available at http://www.sagemath.org.

• MPFUN2015: A thread-safe arbitrary precision package for Fortran
application, with an all-Fortran version and a version based on MPFR
for faster performance; available at https://www.davidhbailey.com/
dhbsoftware/.
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2.1 Thread safety and parallel implementations

The scientific computing world is moving rapidly into multicore and multi-
node parallel computing, so that future improvements in performance on
high-precision computations will only be obtained by aggressively exploiting
parallelism. On modern multicore processors, parallel computing is most ef-
ficiently performed using a shared memory, multithreaded environment such
as OpenMP [39] within a single node, even if a message passing system such
as MPI is employed for parallelism between nodes.

Computations that use a thread-parallel environment such as OpenMP
must be entirely “thread-safe.” One impediment to thread safety for multi-
precision applications is the design of the operator overloading feature (i.e.,
extending +, −, ×, ÷ to multiprecision data) of modern computer languages,
which typically does not permit one to carry information such as the cur-
rent working precision level. More importantly, most existing high-precision
packages generate a “context” of auxiliary data, such as the current working
precision level and data to support transcendental function evaluation, which
context typically ruins thread safety unless special care is taken.

Of the packages listed in Section 2, only one is both thread-safe and
supports arbitrary precision floating-point calculations with a high-level in-
terface, namely the MPFR C++ package [33]. This package is built upon the
lower-level MPFR package [27], which in turn is well-designed, features cor-
rect rounding to the last bit, includes numerous transcendental and special
functions, and achieves the the fastest overall timings of any floating-point
package in the above list [22]. However, the MPFR package is only thread-
safe when a special option is enabled in the installation step, which typically
must be done with administrator privilege.

There was, to this author’s knowledge, no high-level, thread-safe arbitrary
precision package to support Fortran applications, prior to MPFUN2015,
which was mentioned in the above list. However, this software has some
shortcomings: (a) the run-time performance of the all-Fortran version is
typically 3X-5X slower than the version based on MPFR; and (b) with both
versions of the package, significant memory is wasted for applications where
part of multiprecision arrays require only a medium level of precision.
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3 MPFUN2020: A new thread-safe package

To that end, the present author has written a new thread-safe arbitrary
precision package. As with the MPFUFN2015 package, it is offered in two
versions: an all-Fortran version (MPFUN20-Fort), which runs several times
faster than the all-Fortran version of MPFUN2015, and also a version based
on the MPFR package (MPFUN20-MPFR), which is even faster and more
complete than the MPFR version of MPFUN2015.

Both versions feature: (a) a completely thread-safe design, so user codes
can be converted for parallel execution at the application level; (b) a full-
featured high-level Fortran interface, so that most applications can be con-
verted to multiprecision with only minor changes to source code; (c) full
support for both real and complex datatypes; (d) numerous transcenden-
tal and special functions; (e) run-time checking to guard against problems
with converting double precision data; (f) a medium precision datatype that
improves performance on large variable precision applications; and (g) inter-
operability, so that with a simple restriction, application codes written for
one version can be run using the other without any code changes.

The sharply improved performance of the all-Fortran MPFUN20-Fort ver-
sion is due primarily to changing the underlying design of the package to be
based on 64-bit integer operations, rather than on 64-bit floating-point op-
erations as in the earlier package. Additionally, the MPFUN20-Fort version
employs FFT-based arithmetic for significantly faster execution at very high
precision levels — see Sections 7.2. The new MPFUN20-MPFR version is
even faster than the MPFUN20-Fort version on most applications, although
it is significantly more complicated to install, because the GMP and MPFR
packages must first be installed, usually requiring administrator privilege.

3.1 Data structure

For the MPFUN20-Fort version, the structure is a (N + 6)-long vector of
64-bit integers, where N is the number of mantissa words:

• Word 0: Total space allocated for this array, in 64-bit integer words.

• Word 1: The working precision level (in words) associated with this
data.
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• Word 2: The number of mantissa words N ; the sign of word 2 is the
sign of the value.

• Word 3: The multiprecision exponent, base 260.

• Word 4 to N + 3: N mantissa words (whole numbers between 0 and
260 − 1).

• Word N + 4 and N + 5: Scratch words for internal usage.

For the MPFUN20-MPFR version, the structure is a (N + 6)-long vector
of 64-bit integers, where N is the number of mantissa words:

• Word 0: Total space allocated for this array, in 64-bit words.

• Word 1: The working precision level (in bits) associated with this data.

• Word 2: The sign of the value.

• Word 3: The exponent, base 2.

• Word 4: A pointer to the first word of the mantissa, which in MPFUN20-
MPFR always points to Word 5.

• Word 5 to N + 4: Mantissa words (unsigned integers between 0 and
264 − 1).

• N + 5: Not used at present.

Note that in the MPFUN20-MPFR version, words 1 through N + 4 corre-
spond exactly to the data structure of the MPFR package.

For each version, a complex multiprecision datatype is a contiguous pair
of real multiprecision data. The imaginary member of the real-imaginary
pair starts at an offset in the array equal to the value of word 0. Note that
this offset is independent of the working precision.

3.2 Modules

The MPFUN20-Fort and MPFUN20-MPFR versions both include the fol-
lowing separate modules, each in its own source file:
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1. MPFUNA: Contains compile-time global data, including the binary
values of log(2), π and γ (Euler’s constant), up to 20,000-digit precision.

2. MPFUNB (MPFUN20-Fort only): Handles basic arithmetic functions,
rounding, normalization, square roots and n-th roots.

3. MPFUNC (MPFUN20-Fort only): Handles binary-to-decimal conver-
sion, decimal-to-binary conversion and input/output operations.

4. MPFUND: Includes routines for common transcendental constants and
functions (see Table 3 and Section 7.3).

5. MPFUNE: Includes routines for special functions, including Bessel
functions, the error function, the gamma function, the zeta function
and numerous others (see Table 5 and Section 7.4).

6. MPFUNF: Defines the default standard precision and medium precision
levels, in digits, and also the equivalent levels in words.

7. MPFUNG: A high-level user interface that provides support for the
standard high-precision datatype.

8. MPFUNH: A high-level user interface that provides support for the
medium precision datatype.

9. MPMODULE: The main module that references the others; in normal
usage it is the only module that is directly referenced by the user.

3.3 The MPFUN2020 solution to thread safety

All of the software modules above are 100% thread safe. There are no global
parameters or arrays, except for static, compile-time data, and no initial-
ization is required unless extremely high precision is required (over 20,000
digits). The working precision level is always passed as a subroutine argu-
ment, ensuring thread safety. The MPFUN20-MPFR version is thread-safe
provided that the MPFR package is compiled with the thread-safe option.

Thread safety at the language interface or user level in both versions is
achieved by assigning a working precision level to each multiprecision datum,
which then is passed through the multiprecision software. Note, in the data
structures given in Section 3.1 above, that word 1 (the second word of the
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array) is the working precision level associated with that datum. This solves
the thread safety problem when precision is dynamically changed in the ap-
plication, although it requires a slightly different programming style for some
applications, as we shall explain below (see Section 5.7).

All computations are performed to a fixed precision set by the user in
module MPFUNF (default is 2500 digits), unless the user specifies a lower
value for certain calculations (see Section 5.7 for details) or otherwise employs
a variable precision design. The result of any operation involving multipreci-
sion variables or array elements inherits the working precision level of the
input operands; if the operands have different working precision levels, the
higher precision level is chosen for the result. When assigning a double pre-
cision constant or variable to a multiprecision variable or array element, or
when reading multiprecision data from a file, the result is assigned the default
precision unless a lower precision level is specified.

4 Installation, compilation and linking

The two versions of the MPFUN2020 package, together with installation in-
structions, are available at https://www.davidhbhailey.com/dhbsoftware.

Installation, compilation and linking is relatively straightforward, pro-
vided that one has a Unix-based system, such as Linux or Apple OS X, and
a Fortran-2008-compliant compiler. The gfortran compiler (highly recom-
mended for both versions of the package) is available for a variety of systems
at https://gcc.gnu.org/wiki/GFortranBinaries; for Mac OS X systems,
see https://github.com/fxcoudert/gfortran-for-macOS/releases. Full
details, plus installation instructions, are available in the README file for
the distribution, which is in the main directory of the distribution, or at
https://www.davidhbhailey.com/dhbsoftware.

4.1 The two variants

Each of the two versions of the software comes in two variants:

• Variant 1: This is recommended for beginning users and for basic ap-
plications that do not dynamically change the working precision level
(or do so only rarely).
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• Variant 2: This is recommended for more sophisticated applications
that dynamically change the working precision level. It does not allow
some mixed-mode combinations, and requires one to explicitly specify
a working precision parameter for some functions. However, in the
present author’s experience, these restrictions result in less overall effort
to produce a debugged, efficient application code. See Section 5.7.

The Fortran source files and scripts required for each of these variants are
in the respective directories fortran-var1 and fortran-var2.

Compile/link scripts are available in the fortran-var1 and fortran-var2
directories for the gfortran and Intel ifort compilers, and, with MPFUN20-
Fort, for the NAG nagfor compiler. These scripts automatically select the
proper source files from the package for compilation. For example, to compile
variant 1 of either the MPFUN20-Fort or MPFUN20-MPFR library using the
GNU gfortran compiler, go to the fortran-var1 directory and type

./gnu-complib1.scr

To compile and link the application program tpslq1.f90 for variant 1, using
the GNU gfortran compiler, producing the executable file tpslq1, type

./gnu-complink1.scr tpslq1

To execute the program, with output to tpslq1.txt, type
./tpslq1 > tpslq1.txt

These scripts assume that the user program is in the same directory as the
library files; this can easily be changed by editing the script files.

Several sample test programs, together with reference output files, are
included in the fortran-var1 and fortran-var2 directories — see Section 6.

5 Coding Fortran applications

A high-level Fortran interface is provided for each version of the package
(MPFUN20-Fort and MPFUN20-MPFR).

5.1 Basic instructions for using the package

To use either MPFUN20-Fort or MPFUN20-MPFR in a user program, first
set the parameter mpipl, the default standard precision level in digits, which
is the maximum precision level to be used for subsequent computation; this
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is used to specify the amount of storage required for multiprecision data.
mpipl is set in a parameter statement in file mpfunf.f90 in the fortran-var1
or fortran-var2 directory of the software. In the code as distributed, mpipl
is set to 2500 digits (sufficient to run the six test programs of Section 6),
but it can be set to any level greater than 50 digits. mpipl is automatically
converted to mantissa words by the formula

mpwds = int (mpipl / mpdpw + 2)

where mpdpw is a double precision system parameter set in file mpfuna.f90 (in
MPFUN20-Fort, mpdpw = log10 260 = 18.0617997 . . .; in MPFUN20-MPFR,
mpdpw = log10 264 = 19.2659197 . . .). The resulting parameter mpwds is the
internal default precision level, in words. All subsequent computations are
performed to mpwds words precision unless the user, in an application code,
specifies a lower precision.

After setting the value of mpipl, if needed, compile the appropriate ver-
sion of the library, using one of the scripts mentioned in the previous section.

Next, place the following line in every subprogram of the user’s applica-
tion code that contains a multiprecision variable or array, at the beginning
of the declaration section, before any implicit or type statements:

use mpmodule

To designate a variable or array as multiprecision real in an application pro-
gram, use a Fortran-90 type statement with the type mp real, as in this
example:

type (mp real) a, b(m), c(m,n)

Similarly, to designate a variable or array as multiprecision complex, use a
type statement with the type mp complex. Thereafter when one of these
variables or arrays appears, as in the code

d = a + b(i) * sqrt(3.d0 - c(i,j))

the proper underlying multiprecision routines are automatically called.
Most common mixed-mode combinations (arithmetic operations, compar-

isons and assignments) involving multiprecision real (MPR), multiprecision
complex (MPC), double precision (DP), double complex (DC), and integer
operands are supported. A complete list of supported mixed-mode opera-
tions is given in Table 2. See Section 5.5 below about DP and DC constants
and expressions.

Input and output of MP variables or array elements are done by using
the special subroutines mpread and mpwrite. See Table 4 and Section 5.4.
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Operator Arg 1 Arg 2 Operator Arg 1 Arg 2

a = b MPR MPR +, -, *, / MPR MPR
(assignment) DP MPR (+,−,×,÷) DP MPR

Int MPR MPR DP
MPR MPC Int MPR
MPC MPR MPR Int
MPC MPC MPC MPC
DP MPC DP MPC
DC MPC MPC DP
MPR DP {1} DC MPC
MPR Int {1} MPC DC
MPR Char {1} MPR MPC
MPC DP {1} MPC MPR
MPC DC {1}

a**b MPR Int ==, /= MPR MPR
(ab) MPR MPR (=, 6= tests) DP MPR

MPC Int MPR DP
MPC MPC Int MPR
MPR MPC MPR Int
MPC MPR MPC MPC

<=, >=, <, > MPR MPR DP MPC
(≤,≥, <,> tests) DP MPR MPC DP

MPR DP DC MPC
Int MPR MPC DC
MPR Int MPR MPC

MPC MPR

Table 2: Supported mixed-mode operator combinations. MPR denotes mul-
tiprecision real, MPC denotes multiprecision complex, DP denotes double
precision, DC denotes double complex, Int denotes integer and Char denotes
arbitrary-length character string. Note:
{1} These operations are not allowed in variant 2 — see Section 5.7.
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5.2 Extra-high precision

The above instructions apply if the default precision level, namely mpipl, is
less than or equal to 20,000 digits. If one requires a precision level greater
than this, then in addition to changing the value of mpipl (and, thus, mpwds)
in file mpfunf.f90, one must include a call to mpinit at the start of execution,
in a single-threaded section of code, before any multiprecision operations are
performed:

call mpinit (nwds)

where nwds is the requested precision level in words (normally nwds = mpwds).
A call to mpinit initializes FFT tables (in MPFUN20-Fort) and calculates
log(2), π and γ. If the requested precision (mpwds or nwds) is less than
mpl2pi, a call to mpinit has no effect.

It should be noted, however, that some special functions internally require
log(2), π and γ to higher precision. If one sees a run-time error message such
as “Pi must be precomputed to precision 1200 words,” insert a call to mpinit

at start of execution with the specified precision as the argument.

5.3 Functions and subroutines

As mentioned above, the MPFUN20-Fort and MPFUN20-MPFR packages
support most Fortran-2008 intrinsics, including all the well-known transcen-
dentals (e.g., sin, exp, log, etc.), and, in addition, an extensive set of special
functions (e.g., Bessel functions, the gamma function, the zeta function, and
numerous others). Further, the package includes a set of I/O and conversion
functions, such as functions to convert between double precision and multi-
precision real or between double complex and multiprecision complex. These
functions and subroutines are listed below in tables 3, 4, 5 and 6 (a few are
listed in more than one table).

In these tables, “F” denotes function, “S” denotes subroutine, “MPR”
denotes multiprecision real, “MPC” denotes multiprecision complex, “DP”
denotes double precision, “DC” denotes double complex, “Int” denotes inte-
ger and “QP” denotes IEEE quad precision (if supported by the compiler).
The variable names r1,r2,r3 are MPR; z1 is MPC; d1 is DP; dc1 is DC;
q1 is QP; i1,i2,i3,n,nb,np,nq are integers; s1 is character(1); sn is char-
acter(n); rb is an MPR vector of length nb; ss is an MPR vector of length
n; aa is an MPR vector of length np; and bb is an MPR vector of length nq.
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Type Name Description
F:MPR abs(r1) Absolute value
F:MPR abs(z1) Absolute value of complex arg
F:MPR acos(r1) Inverse cosine
F:MPR acosh(r1) Inverse hyperbolic cosine
F:MPR aimag(z1) Imaginary part of complex arg
F:MPR aint(r1) Truncates to integer
F:MPR anint(r1) Rounds to closest integer
F:MPR asin(r1) Inverse sine
F:MPR asinh(r1) Inverse hyperbolic sine
F:MPR atan(r1) Inverse tangent
F:MPR atan2(r1,r2) Arctangent with two args
F:MPR atanh(r1) Inverse hyperbolic tangent
F:MPR bessel j0(r1) BesselJ function, order 0
F:MPR bessel j1(r1) BesselJ function, order 1
F:MPR bessel jn(n,r1) BeselJ function, order n
F:MPR bessel y0(r1) BesselY function, order 0
F:MPR bessel y1(r1) BesselY function, order 1
F:MPR bessel yn(n,r1) BeselY function, order n
F:MPC conjg(z1) Complex conjugate
F:MPR cos(r1) Cosine of real arg
F:MPC cos(z1) Cosine of complex arg
F:MPR cosh(r1) Hyperbolic cosine
F:DP dble(r1) Converts MPR argument to DP
F:DC dcmplx(z1) Converts MPC argument to DC
F:MPR erf(r1) Error function
F:MPR erfc(r1) Complementary error function
F:MPR exp(r1) Exponential function of real arg
F:MPC exp(z1) Exponential function of complex arg
F:MPR gamma(r1) Gamma function
F:MPR hypot(r1,r2) Hypotenuse of two args
F:MPR log(r1) Natural logarithm of real arg
F:MPC log(z1) Natural logarithm of complex arg
F:MPR log10(r1) Base-10 logarithm of real arg
F:MPR max(r1,r2) Maximum of two (or three) args
F:MPR min(r1,r2) Minimum of two (or three) args
F:MPR mod(r1,r2) Mod function = r1 - r2*aint(r1/r2)

F:MPR sign(r1,r2) Transfers sign from r2 to r1

F:MPR sin(r1) Sine function of real arg
F:MPC sin(z1) Sine function of complex arg
F:MPR sinh(r1) Hyperbolic sine
F:MPR sqrt(r1) Square root of real arg
F:MPC sqrt(z1) Square root of complex arg
F:MPR tan(r1) Tangent function
F:MPR tanh(r1) Hyperbolic tangent function

Table 3: Fortran-2008 intrinsic functions extended to multiprecision.
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Type Name Description
F:MPC mpcmplx(r1,r2) Converts (r1,r2) to MPC [1]
F:MPC mpcmplx(dc1) Converts DC arg to MPC [1]
F:MPC mpcmplx(z1) Converts MPC arg to MPC [1]
F:MPC mpcmplxdc(dc1) Converts DC to MPC, without checking [1][2]
S mpcssh(r1,r2,r3) Returns both cosh and sinh of r1, in the same

time as calling just cosh or just sinh
S mpcssn(r1,r2,r3) Returns both cos and sin of r1, in the same

time as calling just cos or just sin
S mpdecmd(r1,d1,i1) Converts r1 to the form d1*10^i1

S mpeform(r1,i1,i2,s1) Converts r1 to char(1) string in Ei1.i2
format, suitable for output (Sec. 5.4)

S mpfform(r1,i1,i2,s1) Converts r1 to char(1) string in Fi1.i2
format, suitable for output (Sec. 5.4)

F:MPR mpegamma() Returns Euler’s γ constant [1]
S mpinit() Initializes for extra-high precision (Sec. 5.2) [1]
F:MPR mplog2() Returns log(2) [1]
F:MPR mpnrt(r1,i1) Returns the i1-th root of r1
F:MPR mppi() Returns π [1]
F:MPR mpprod(r1,d1) Returns r1*d1, without checking [2]
F:MPR mpquot(r1,d1) Returns r1/d1, without checking [2]
F:MPR mprand(r1) Returns pseudorandom number, based on r1

Start with an irrational, say r1 = mplog2()

Typical iterated usage: r1 = mprand(r1)

S mpread(i1,r1) Inputs r1 from Fortran unit i1; up to five
MPR args may be listed (Sec. 5.4) [1]

S mpread(i1,z1) Inputs z1 from Fortran unit i1; up to five
MPC args may be listed (Sec. 5.4) [1]

F:MPR mpreal(r1) Converts MPR arg to MPR [1]
F:MPR mpreal(z1) Converts MPC arg to MPR [1]
F:MPR mpreal(d1) Converts DP arg to MPR [1]
F:MPR mpreal(s1,i1) Converts char(1) string of length i1 to MPR (Sec. 5.4) [1]
F:MPR mpreal(sn) Converts char(n) string to MPR (Sec. 5.4) [1]
F:MPR mpreald(d1) Converts DP to MPR, without checking [1][2]
F:Int mpwprec(r1) Returns precision in words assigned to r1
F:Int mpwprec(z1) Returns precision in words assigned to z1
S mpwrite(i1,i2,i3,r1) Outputs r1 in Ei2.i3 format to unit i1; up to

five MPR args may be listed (Sec. 5.4)
S mpwrite(i1,i2,i3,z1) Outputs z1 in Ei2.i3 format to unit i1; up to

five MPC args may be listed (Sec. 5.4)

Table 4: Additional general routines (F: function, S: subroutine). Notes:
[1]: In variant 1, an integer precision level argument (mantissa words) may optionally be
added as the final argument; this argument is required in variant 2. See Sec. 5.7.
[2]: These do not check DP or DC values. See Sec. 5.5.
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Type Name Description
F:MPR agm(r1,r2) Arithmetic-geometric mean
F:MPR airy(r1) Airy function [1]
S mpberne(nb,rb) Initialize array rb of length nb with first nb even

Bernoulli numbers [2][3]
F:MPR bessel i(r1,r2) BesselI function, order r1, of r2
F:MPR bessel in(n,r1) BesselI function, order n, of r1
F:MPR bessel j(r1,r2) BesselJ function, order r1, of r2
F:MPR bessel j0(r1) BesselJ function, order 0, of r1
F:MPR bessel j1(r1) BesselJ function, order 1, of r1
F:MPR bessel jn(n,r1) BesselJ function, order n, of r1
F:MPR bessel i(r1,r2) BesselK function, order r1, of r2
F:MPR bessel kn(n,r1) BesselK function, order n, of r1
F:MPR bessel y(r1,r2) BesselY function, order r1, of r2
F:MPR bessel y0(r1) BesselY function, order 0, of r1
F:MPR bessel y1(r1) BesselY function, order 1, of r1
F:MPR bessel yn(n,r1) BesselY function, order n, of r1
F:MPR digamma(r1) Digamma function of r1 [1]
F:MPR digamma be(nb,rb,r1) Digamma function of r1, using nb even

Bernoulli numbers in rb [3]
F:MPR erf(r1) Error function
F:MPR erfc(r1) Complementary error function
F:MPR expint(r1) Exponential integral function
F:MPR gamma(r1) Gamma function
F:MPR hurwitz zetan(k,r1) Hurwitz zeta function, order n ≥ 2, of r1 [4]
F:MPR hurwitz zetan be Hurwitz zeta function, order n ≥ 2, of r1, using

(nb,rb,n,r1) nb even Bernoulli numbers in rb [3]
F:MPR hypergeom pfq Hypergeometric pFq function of aa, bb and r1;

(np,nq,aa,bb,r1) dimensions are aa(np) and bb(nq) [5]
F:MPR incgamma(r1,r2) Incomplete gamma function [6]
F:MPR polygamma(k,r1) Polygamma function, order k ≥ 1, of r1 [4]
F:MPR polygamma be(nb,rb,k,r1) Polygamma function, order k ≥ 1, of r1, using

nb even Bernoulli numbers in rb [3]

Table 5: Special functions (F: function, S: subroutine) (continued in Table 6). Notes:
[1]: Only available with MPFUN20-MPFR.
[2]: In variant 1, an integer precision level argument (mantissa words) may optionally be
added as the final argument; this argument is required in variant 2. See Sec. 5.7.
[3]: For most applications, set nb > 2X precision in decimal digits; see mpberne above.
[4]: For hurwitz zetan and polygamma, the argument r1 is limited to the range (0, 1).
[5]: For hypergeom pfq, the integers np and nq must not exceed 10.
[6]: For incgamma, r1 must not be zero, and must not be negative unless r2 = 0.
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S polylog ini(n,ss) Initialize array ss, of size |n|, for computing
polylogarithms of order n when n < 0 [2][6]

F:MPR polylog neg(n,ss,r1) Polylogarithm function of r1, for n < 0, using
precomputed data in ss [7]

F:MPR polylog pos(n,r1) Polylogarithm function, order n ≥ 0, of r1 [8]
F:MPR struve hn(n,r1) StruveH function, order n ≥ 0, of r1 [9]
F:MPR zeta(r1) Zeta function of r1
F:MPR zeta be(nb,rb,r1) Zeta function of r1, using nb even Bernoulli

numbers in rb [3]
F:MPR zeta int(n) Zeta function of integer argument n [2]

Table 6: Special functions, continued (F: function, S: subroutine). Notes:
[2]: In variant 1, an integer precision level argument (mantissa words) may optionally be
added as the final argument; this argument is required in variant 2. See Sec. 5.7.
[6]: For incgamma, r1 must not be zero, and must not be negative unless r2 = 0.
[7]: For polylog ini and polylog neg, the integer n is limited to the range [−1000,−1].
[8]: For polylog pos, the argument r1 is limited to the range (−1, 1).
[9]: For struve hn, the argument r1 is limited to the range [−1000, 1000].

5.4 Input and output of multiprecision data

Binary-decimal conversion and input or output of multiprecision data are
handled by special subroutines, as briefly mentioned in Table 4:

1. subroutine mpeform (r1,i1,i2,s1). This converts the MPR num-
ber r1 into decimal character form in the character(1) array s1. The
argument i1 (input) is the length of the output string, and i2 (input)
is the number of digits after the decimal point. The format is analogous
to Fortran E format. The result is left-justified among the i1 cells of
s1. The condition i1 >= i2 + 20 must hold.

2. subroutine mpfform (r1,i1,i2,s1). This converts the MPR num-
ber r1 into decimal character form in the character(1) array s1. The
argument i1 (input) is the length of the output string, and i2 (input)
is the number of digits after the decimal point. The format is analogous
to Fortran F format. The result is right-justified among the i1 cells of
s1. The condition i1 >= i2 + 20 must hold.

3. subroutine mpread (i1,r1). This reads the MPR number r1, pre-
sumed in decimal format, from Fortran logical unit i1. The digits of
r1 may span more than one line, provided that a backslash appears at
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the end of a line to be continued. Individual input lines may not ex-
ceed 2048 characters in length. Format: The input number must have
a leading digit (possibly zero), must have a period somewhere; may
include an e, d, E or D followed by an integer exponent; but must not
have embedded blanks. Up to five MPR arguments may be included in
argument list. See item 9 below on an additional precision argument.

4. subroutine mpread (i1,z1). This is the same as the previous item
(3), except that the input argument z1 is of type MPC (a pair of MPR).
Up to five MPC arguments may be included in argument list. See item
9 below on an additional precision argument.

5. function mpreal (s1,i1). This converts the string s1, which is of
type character(1) and length i1, to MPR. See item 3 for format. See
item 9 below on an additional precision argument.

6. function mpreal (sn). This converts the string sn, which may be
of type character(n) for any n, to MPR. See item 3 for format. On
some systems, n may be limited, say to 2048; if this is a problem, use
item 5. See item 9 below on an additional precision argument.

7. subroutine mpwrite (i1,i2,i3,r1). This writes the MPR number
r1 to Fortran logical unit i1, in a format analogous to Fortran E format,
left-justified in the field. The argument i2 (input) is the length of the
output field, and i3 (input) is the number of digits after the decimal
point; i3 must exceed i2 by 20. Up to five MPR arguments may be
included in argument list.

8. subroutine mpwrite (i1,i2,i3,z1). This is the same as the previ-
ous item (7), except that the argument z1 is of type MPC (a pair of
MPR). Up to five MPC arguments may be included in argument list.

9. Note: For mpread (items 3 and 4) and mpreal (items 5 and 6), when
using variant 1, an integer working precision level argument (mantissa
words) may optionally be added as the final argument; this argument
is required in variant 2. See Section 5.7.
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5.5 Handling double precision values

Double precision constants and expressions are indispensable in high-precision
applications. For one thing, the product, say, of a multiprecision value times
a double precision value is more rapidly computed with a routine dedicated
to this task than converting the double precision value to multiprecision and
then calling the full multiplication routine. Certainly the usage of double
precision constants such as modest-sized whole numbers and exact binary
fractions (e.g., 3., 12345., 2.5, 6.125), which are entirely safe in a multipreci-
sion application, should be allowed.

Users should be aware, however, that there are some hazards in this type
of programming, inherent in conventions adopted by all Fortran compilers
and most other languages as well. For example, the code

r1 = 3.14159d0

where r1 is MPR, does NOT produce the true multiprecision equivalent
of 3.14159. In fact, the above line of code will result in a run-time error
with either version of the MPFUN2020 software. To obtain the full MPR
converted value, write this as

r1 = ’3.14159’

or, if using variant 2, as
r1 = mpreal (’3.14159’, nwds)

where nwds is the working precision (in words) to be assigned to r1. Similarly,
the code

r2 = r1 + 3.d0 * sqrt (2.d0)

where r1 and r2 are MPR, does NOT produce the true multiprecision value
one might expect, since the expression 3.d0 * sqrt (2.d0) will be per-
formed in double precision, according to Fortran precedence rules. In fact,
the above line of code will result in a run-time error with either version of
the MPFUN2020 software. To obtain the fully accurate result, write this as

r2 = r1 + 3.d0 * sqrt (mpreal (2.d0))

or, if using variant 2, as
r2 = r1 + 3.d0 * sqrt (mpreal (2.d0, nwds))

where nwds is the working precision in words.
To help avoid such problems, both versions of the MPFUN2020 software

check every double precision value (constants, variables and expression val-
ues) in a multiprecision statement at execution time to see if it has more
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than 40 significant bits. If so, it is flagged as an error, since very likely such
usage represents an unintended loss of precision in the application program.
This feature catches 99.99% of accuracy loss problems due to the usage of
inexact double precision values.

On the other hand, some applications (including several of the sample test
codes mentioned in Section 6) contain legitimate double precision constants
that are trapped by this test. In order to permit such usage, four special
functions have been provided: mpprod, mpquot, mpreald, mpcmplxdc (see
Table 4). The first and second return the product and quotient, respectively,
of a MPR argument and a DP argument; the third converts a DP value
to MPR (with an optional precision level parameter — see Section 5.7);
and the fourth converts a DC value to MPC (with an optional precision
level parameter — see Section 5.7). These routines do not check the double
precision argument to see if it has more than 40 significant bits.

5.6 Support for quad precision

Several processor/compiler systems now support IEEE quad (128-bit) floating-
point arithmetic. If one’s platform does support IEEE quad, limited support
is provided in the MPFUN2020 package. To determine whether or not IEEE
quad is supported on one’s platform, compile and execute the simple program

program testq

integer, parameter:: mprknd2 = selected real kind (33, 4931)

real (mprknd2) q1, q2

q1 = real (-1.d0, kind = mprknd2)

q2 = acos (q1)

write (6, ’(1p,d42.34)’) q2

stop

end

If this code is successfully compiled and produces the output
3.1415926535897932384626433832795028D+00

(except possibly for the final digit), then one’s system supports IEEE quad.
The MPFUN2020 function mpreal function accepts a quad argument for

conversion to multiprecision, and the qreal function accepts a multipreci-
sion argument for conversion to quad. Other routines available are mpprod,

mpquot and mprealq. Note that the mpreal function checks the quad argu-
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Type Name Description
F:MPR mpprod(r1,q1) Returns r1*q1, without checking [2]
F:MPR mpquot(r1,q1) Returns r1/q1, without checking [2]
F:MPR mpreal(q1) Converts quad real to MPR [1]
F:MPR mprealq(d1) Converts quad to MPR, without checking [1][2]
F:Q qreal(r1) Converts MPR to quad.

Table 7: Support for IEEE quad precision (if available) (F: function, S: subroutine).
Notes:
[1]: In variant 1, an integer precision level argument (mantissa words) may optionally be
added as the final argument; this argument is required in variant 2. See Sec. 5.7.
[2]: These do not check quad values. See Sec. 5.6.

ment to see if it has more than 90 significant bits; if so, an error is flagged,
as mentioned above for double precision conversions. To convert without
checking, use mprealq. See Table 7.

When using variant 1, an integer working precision level argument (man-
tissa words) may optionally be added as the final argument for the functions
mpreal and mprealq; this argument is required in variant 2. See Section 5.7.

5.7 Dynamically changing the working precision

Some multiprecision applications run fine with a fixed precision level, but
others are more efficiently implemented with a working precision level that
is changed frequently. Accordingly, for each version of the package, there are
two variants of the package, as mentioned above in Section 4:

• Variant 1: This is recommended for beginning users and for basic ap-
plications that do not dynamically change the working precision level
(or do so only rarely).

• Variant 2: This is recommended for more sophisticated applications
that dynamically change the working precision level. It does not allow
some mixed-mode combinations, and requires one to explicitly specify
a working precision parameter for some functions. However, in the
present author’s experience, these restrictions result in less overall effort
to produce a debugged, efficient application code.

In particular, with variant 1:
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1. Assignments of the form R = X, where R is MPR and X is DP, integer
or literal, are permitted. Assignments of the form Z = Y, where Z is
MPC and Y is DP or DC, are permitted.

2. The routines mpcmplx, mpcmplxdc, mpegamma, mpinit, mplog2,

mppi, mpread, mpreal, mpreald, mprealq and zeta int each have
an (optional) integer argument as the final argument in the list. This
argument is the working precision level, in words, to be assigned to the
result(s). If this argument is not present, the default precision level
(mpwds words, corresponding to mpipl digits) is assumed.

In contrast, with variant 2:

1. The assignments mentioned in item 1 above are not permitted. If any
of these appears in code, compile-time errors will result. Instead, one
must use mpreal and mpcmplx, as appropriate, with the precision level
(in mantissa words) as the final argument, to perform these conversions.

2. The optional working precision level arguments mentioned in item 2
above are required in all cases. For example, if the full default precision
level (mpwds, corresponding to mpipl digits) is required, then a call to
one of the functions or subroutines in item 2 above must have mpwds

as the final argument.

Note that the mpreal function, with the precision level (in words) as the
second argument, can be used to assign an MPR argument with one precision
level to an MPR variable or array element with a different working precision
level. The same is true of mpcmplx. The working precision currently assigned
to any MP variable or array element may be obtained by using the function
mpwprec — see Table 4.

Along this line, when one uses the precision level arguments, a precision
level of ndig digits can be converted to words by the formula nwds = int

(ndig / mpdpw + 2). By using the global built-in variable mpdpw (which is
different between MPFUN20-Fort and MPFUN20-MPFR) in this way, the
user code remains completely portable between the two versions.

As it turns out, in most applications, even those that frequently require
the working precision to be changed, only a few changes need to be made to
the source code to implement variable precision. Consider, for example, the
following user code, where the default precision is 2500 digits:
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integer k, nx

parameter (nx = 128)

type (mp real) x(nx)

x(1) = 1.d0

do k = 2, nx

x(k) = 2.d0 * x(k-1) + 1.d0

enddo

This code, as written, is permissible with variant 1, but not with variant
2, because the assignment x(k) = 1.d0 is not allowed. Furthermore, all
operations are performed with the default (maximum) precision level of 2500
digits. So with variant 2, where one wishes to perform this loop with a
precision level of, say, 500 digits, this should be written as:

integer k, ndig, nwds, nx

parameter (nx = 128, ndig = 500, nwds = int (ndig / mpdpw + 2))

type (mp real) x(nx)

x(1) = mpreal (1.d0, nwds)

do k = 2, nx

x(k) = 2.d0 * x(k-1) + 1.d0

enddo

Note that by changing x(1) = 1.d0 to x(1) = mpreal (1.d0, nwds),
the array element x(1) is assigned the value 1.0, with a working precision of
nwds words (i.e., 500 digits). In the loop, when k is 2, x(2) also inherits the
working precision level nwds words, since it is computed with an expression
that involves x(1). By induction, all elements of the array x inherit the
working precision level nwds words (i.e., 500 digits).

This scenario is entirely typical of using variable precision — in most
cases, it is only necessary to make a few code changes, such as in assignments
to double precision values before a loop, to completely control dynamic pre-
cision. However, it is highly recommended that the user frequently employ the
system function mpwprec, which returns the working precision level currently
assigned to an multiprecision variable or array element (see Table 4), to en-
sure that the working precision level the user thinks is assigned to a variable
is indeed the level being used by the program.

Using variant 2, with its stricter coding standards, requires a bit more
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programming effort, but in the present author’s experience, when dealing
with applications that dynamically change the precision level, this additional
effort is more than repaid by fewer debugging and performance problems in
actual usage. A code written for variant 2 also works with variant 1, but not
vice versa.

See the sample test codes mentioned in Section 6, all of which are written
to conform to the stricter standards of variant 2.

5.8 Medium precision datatype

In many high-precision applications, only part of the multiprecision variables
and arrays contain full precision data; others contain data with only modest
precision, typically only a fraction as high (although still higher than double
precision). Since all multiprecision data are allocated sufficient space to
accommodate full precision values, much of the storage and data movement
costs for modest precision data are wasted.

To reduce memory usage and improve performance in such applications,
a medium precision real and a medium precision complex datatype have been
defined, and are available in both the MPFUN20-Fort and MPFUN20-MPFR
versions of the software. To use these datatypes, do the following:

First, set the medium precision level mpiplm in file mpfunf.f90; by default
it is set to 250 digits. Then in each user subprogram that will include either
full precision or medium precision data, insert the following line:

use mpmodule

as with standard full precision. To designate a variable or array as medium
precision real, use a Fortran-90 type statement with the type mp realm, as
in this example:

type (mp realm) a, b(m), c(m,n)

Similarly, use the type mp complexm for medium precision complex data.
Direct assignments between full precision and medium precision vari-

ables, as well as mixed-mode arithmetic operations between full precision
and medium precision variables, are not allowed. If one needs to convert
a regular full precision value to a medium precision value, use the function
mprealm, as in this example

type (mp real) a; type (mp realm) b

b = mprealm (a)

Similarly, to convert a medium precision value to a full precision value, use
the function mpreal, as in
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Type Name Description
F:MPRM mprealm(r1) Converts MPR to med prec real [1]
F:MPRM mprealm(d1) Converts DP to med prec real [1]
F:MPRM mprealdm(d1) Converts DP to med prec real, without checking [1][2]
F:MPCM mprealqm(q1) Converts quad to med prec real , without checking [1][2]
F:MPCM mpcmplxm(dc1) Converts DC to med prec complex [1]
F:MPCM mpcmplxdm(dc1) Converts DC to med prec complex, without checking [1][2]
F:MPRM mpegammam() Returns Euler’s gamma constant to med prec real [1]
F:MPRM mplog2m() Returns log(2) to med prec real [1]
F:MPRM mppim() Returns π to med prec real [1]
F:MPRM zeta intm(n) Returns ζ(n) to med precision real [1]

Table 8: Routines to support medium precision datatytpe (F: function, S: subroutine),
in addition to the functions listed in Tables 2, 3, 4, 5 and 7. Notes:
[1]: In variant 1, an integer precision level argument (mantissa words) may optionally be
added as the final argument; this argument is required in variant 2. See Sec. 5.7.
[2]: These do not check double or quad values. See Sec. 5.5 and Sec. 5.6.

type (mp real) a; type (mp realm) b

a = mpreal (b)

Note however, that with either mpreal or mprealm, in variant 1, an integer
working precision level argument (mantissa words) may optionally be added
as the final argument; this argument is required in variant 2. See Section 5.7
for details.

Each of the intrinsic functions listed in tables 2, 3, 4, 5, 6 and 7 is also sup-
ported with medium precision arguments, except for the following: mpreald,
mprealq, mpcmplx, mpcmplxd, mpegamma, mplog2, mppi and
zeta int. The medium precision equivalents of these functions are: mprealdm,
mprealqm, mpcmplxm, mpcmplxdm, mpegammam, mplog2m, mppim and
zeta intm, respectively. See Table 8. Note that the comment regarding
the working precision argument in the previous paragraph applies to each of
these functions.

Usage of the medium precision datatype is illustrated in the programs
tpslqm3.f90 and tpphix3.f90 in the application programs in Section 6.

6 Sample applications and performance

The current release of the software includes a set of sample application pro-
grams in the fortran-var1 and fortran-var2 directories (the files are identical
between directories):
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1. testmpfun.f90: This briefly tests most individual MPFUN2020 op-
erations and functions (including mixed mode arithmetic, comparison
operations, transcendental functions and special functions), by com-
paring each result with reference results in the file testmpfun.ref.txt,
which must be present in the same directory. This is not an exhaustive
test of all possible scenarios, but it often detects bugs and compiler
issues. Size of code: 1068 lines. Precision: 500 digits.

2. tpslq1.f90: A one-level standard PSLQ program; finds the coefficients
of the degree-30 polynomial satisfied by 31/5 − 21/6. Size of code: 866
lines. Precision level: 250 digits.

3. tpslqm1.f90: A one-level multipair PSLQ program; finds the coeffi-
cients of the degree-30 polynomial satisfied by 31/5− 21/6. Size of code:
1024 lines. Precision level: 250 digits.

4. tpslqm2.f90: A two-level multipair PSLQ program; finds the coeffi-
cients of the degree-56 polynomial satisfied by 31/7− 21/8. Size of code:
1796 lines. Precision level: 750 digits; switches frequently between
multiprecision and double precision.

5. tpslqm3.f90: A three-level multipair PSLQ program; finds the coeffi-
cients of the degree-72 polynomial satisfied by 31/8− 21/9. Size of code:
2365 lines. Precision level: 1200 digits; switches frequently between full
precision (1200 digits), medium precision (varies from 50 to 110 digits)
and double precision.

6. tpphix3.f90: A Poisson phi program; computes the value of φ2(x, y)
and then employs a three-level multipair PSLQ algorithm to find the
minimal polynomial of degree m satisfied by exp(8πφ2(1/k, 1/k)) for
a given k (see Section 1.4). In the code as distributed, k = 28, m =
96, and a palindromic option is employed so that the multipair PSLQ
routines (which are part of this application) search for a relation of size
49 instead of 97. This computation involves transcendental functions
and both real and complex multiprecision arithmetic. Size of code:
2728 lines. Precision level: 2500 digits; switches frequently between
full precision (2500 digits), medium precision (varies from 50 to 250
digits) and double precision.
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7. tquad.f90: A quadrature (numerical integration) program: performs
the tanh-sinh, the exp-sinh or the sinh-sinh quadrature algorithm, as
appropriate, on a suite of 18 problems involving numerous transcenden-
tal function references, producing results correct to 500-digit accuracy.
Size of code: 1565 lines. Precision level: 1000 digits, but most compu-
tation is done to 500 digits; switches frequently between 500 and 1000
digits.

8. tquadgs.f90: A quadrature (numerical integration) program: per-
forms the Gaussian quadrature algorithm on many of the same 18 prob-
lems as in tquad, producing results correct to 500-digit accuracy. This
code runs much longer than tquad, due to the much greater expense of
computing weights and abscissas. Once the weights and abscissas are
computed, they are written to a file, so they can be reused in future
runs. Size of code: 759 lines. Precision level: 1000 digits, but most
computation is done to 500 digits; switches frequently between 500 and
1000 digits.

In addition, the fortran-var1 and fortran-var2 directories include test
scripts that compile the library and run each of the above sample programs
above (except tquadgs.f90). In directory fortran-var1, these scripts are:

• gnu-mpfun-tests1.scr

• intel-mpfun-tests1.scr

• nag-mpfun-tests1.scr (MPFUN20-Fort only)

and the same scripts in directory fortran-var2, except for 2 instead of 1 in the
filenames. For each test program, the script outputs either TEST PASSED
or TEST FAILED. If all tests pass, then one can be fairly confident that the
MPFUN2020 software and underlying compilers are working properly.

These programs are provided, in part, as examples of programming tech-
niques when using the MPFUN2020 package. Users may feel free to adapt
these codes, although the present author asks to be notified and credited
when this is done. All application programs and library codes are publicly
available but are subject to copyright and other legal conditions. For details,
see the file disclaimer.txt in the distribution package.
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Precision param. MPFUN20- MPFUN-
Code name (digits) k m Fort MPFR

testmpfun 500 12.90 4.20
tpslq1 250 4.88 2.60
tpslqm1 250 2.24 2.13
tpslqm2 750 3.00 2.96
tpslqm3 1200 11.03 11.16
tquad 1000 20.65 3.90
tpphix3 2500 28 96 10.50 8.29
tpphix3 5200 25 100 306.40 233.56

Table 9: Timings on a suite of test programs (seconds).

6.1 Timings

Table 9 presents some performance timings comparing the two versions of
the package for the first seven test programs listed above, plus an additional
run using the tpphix3.f90 code, with different parameters k and m, and
without the palindromic option, which is not available when k is odd.

These runs were performed using the GNU gcc/gfortran compiler (version
12.2.0). For the MPFUN20-MPFR version, the GNU gcc compiler (version
12.2.0) was used to build the GMP and MPFR libraries. These runs were
executed on an Apple Mac Studio system, with OS version 13.4, an Apple M2
Max processor and 32 Gbyte of main memory. For uniformity, the timings are
listed in the Table 9 to two decimal place accuracy, but as with all computer
run time measurements, they should not be considered repeatable beyond
about two or three significant digits.
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7 Appendix: Numerical algorithms

This section presents a brief overview of the algorithms used in MPFUN20-
Fort, and, in some cases, also in MPFUN20-MPFR; other algorithms used
in MPFUN20-MPFR are described in [27].

7.1 Algorithms for basic arithmetic

Multiplication. [MPFUN20-Fort.] For modest levels of precision, MPFUN20-
Fort employs adaptations of the usual schemes we all learned in grade school,
where the number base is 260 = 1152921504606846976. Note that if two n-
word arguments are multiplied, and the working precision is also n words,
then since only an n-word result is returned, only slightly more than half of
the “multiplication pyramid” need be calculated.

Division. [MPFUN20-Fort.] Division of two extra-high-precision arguments
a and b can be performed by the following scheme. First, note that this
Newton-Raphson algorithm iteration converges to 1/b [17, pg. 226]:

xk+1 = xk + (1− xk · b) · xk, (5)

where the multiplication () · xk is performed with only half of the normal
level of precision. These iterations are performed with a working precision
level that is approximately doubles with each iteration, except that at three
iterations before the final iteration, the iteration is repeated without doubling
the precision, in order to enhance accuracy. The final iteration is performed
as follows (due to A. Karp):

a/b ≈ (a · xn) + [a− (a · xn) · b] · xn, (6)

where the multiplications a ·xn and [] ·xn are performed with only half of the
final level of precision. The total cost of this procedure is only about three
times the cost of a single full-precision multiplication.

Square roots. [MPFUN20-Fort.] Square roots are calculated by the following
Newton-Raphson iteration, which converges to 1/

√
a [17, pg. 227]:

xk+1 = xk + 1/2 · (1− x2
k · a) · xk, (7)

where the multiplication () · xk is performed with only half of the normal
level of precision. These iterations are performed with a working precision
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level that approximately doubles with each iteration, except that at three
iterations before the final iteration, the iteration is repeated without doubling
the precision, in order to enhance accuracy. The final iteration is performed
as follows (due to A. Karp):

√
a ≈ (a · xn) + 1/2 · [a− (a · xn)2] · xn, (8)

where the multiplications (a ·xn) and [] ·xn are performed with only half the
final level of precision. If this is done properly, the total cost of the calculation
is only about three times the cost of a single full-precision multiplication.

n-th roots. [MPFUN20-Fort.] A similar scheme is used to compute n-th roots
for any integer n. Computing xnk , which is required here, can be efficiently
performed using the binary algorithm for exponentiation. This is merely
the observation that exponentiations can be accelerated based on the binary
expansion of the exponent: for example, 317 can be computed as ((((3)2)2)2)2 ·
3 = 129140163.

Pseudorandom number generation. [MPFUN20-Fort and MPFUN-MPFR.]
The pseudorandom number included in the package versions is the following:

xn+1 = frac (5501758857861179 · xn), (9)

where the calculation is performed with slightly more than the standard pre-
cision for full accuracy. Here the large prime 5501758857861179 is specified
as the double precision constant mprandx, set in module MPFUNA in file
mpfuna.f90. Its value may be changed if desired, but must not exceed 253.
To use the generator, first set a MPR variable r1 to some irrational value
between 0 and 1, such as

√
1/2, log(2) or π/4. Then successive iterates can

be generated by typing
r1 = mprand (r1)

The same scheme is used for both MPFUN20-Fort and MPFUN20-MPFR.
However, the specific sequence is not the same between the two versions, nor
is it same if the precision level is changed. Note that the above algorithms
are trivially thread-safe, since no auxiliary data is involved.

7.2 FFT-based multiplication

[MPFUN20-Fort only.] Although the multiplication algorithm described
above in Section 7.1 is very efficient, for higher levels of precision (above
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approximately 20,000 digits, based on the present author’s implementation),
significantly faster performance can be achieved by employing an convolution
scheme based on fast Fourier transforms [20][17, pg. 223–224].

Suppose one wishes to multiply two n-precision values whose mantissa
words are given by a = (a0, a1, a2, · · · , an−1) and b = (b0, b1, b2, · · · , bn−1). It
is easy to see that the desired result, except for releasing carries, is an acyclic
convolution. In particular, assume that a and b are extended to 2n words
each by padding with zeroes. Then the product c = (ck) is given by

ck =
2n−1∑
j=0

ajbk−j, 0 ≤ k < 2n, (10)

where bk−j is read as bk−j+2n when k − j is negative. This convolution can
be calculated as

(c) = F−1[F (a) · F (b)], (11)

where F (a) and F (b) denote a real-to-complex discrete Fourier transform
(computed using an FFT algorithm), the dot means element-by-element com-
plex multiplication, and F−1[] means an inverse complex-to-real FFT. The ck
results from this process are floating-point numbers. Rounding these values
to the nearest integer, and then releasing carries beginning at c2n−1 gives the
desired multiplication result.

One important detail was omitted above: to avoid loss of numerical signif-
icance, the 60-bit mantissa words of the input multiprecision values are first
divided into 15-bit sections. Then the FFT-convolution procedure is per-
formed, and the result is suitably reconstituted to an output multiprecision
value of 60-bit words at the end.

In contrast to the basic arithmetic algorithms, FFT-based multiplication
requires precomputed FFT root-of-unity data. Thus, if one requires a preci-
sion level greater than 20,000 digits, one must call mpinit at the start of the
user’s program, in a single-threaded initialization section, before any parallel
execution — see Table 4 and Section 5.2 for details.

7.3 Transcendental constants and functions

Most arbitrary precision packages require a significant “context” of global
data to support transcendental function evaluation at a particular precision
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level, and this data is often problematic for thread safety. Further, if this
context data must be created and freed within each running thread, this
limits the efficiency in a multithreaded environment. With this in mind,
the transcendental functions in MPFUN2020 were designed to require only a
minimum of global data, namely the three constants log(2), π and γ, which
are provided in compile-time global data statements unless extremely high
precision is required. If a precision over 20,000 digits is required, mpinit

must be called at the start of execution, as noted above in Section 5.2, to
compute these three constants.

π is computed in MPFUN20-Fort using a quadratically convergent scheme
discovered by Richard Brent and Eugene Salamin in 1976 [8, 109–110]. Set
a0 = 1, b0 = 1/

√
2 and s0 = 1/2. Iterate, beginning with k = 0,

ak+1 =
ak + bk

2
, bk+1 =

√
akbk,

ck+1 = a2
k+1 − b2

k+1, sk+1 = sk − 2k+1ck+1,

pk+1 =
2a2

k+1

sk+1

. (12)

Then pk converges quadratically to π: each iteration approximately doubles
the number of correct digits.

log(2) is computed in MPFUN20-Fort using the following quadratically
convergent algorithm, also due to Salamin and Brent [8, 228]: Select N > 2B,
where B is the number of bits of desired precision. Then

log(2) =
π

2 AGM (1, 4/2N)
, (13)

where AGM (a, b) denotes the arithmetic-geometric mean: Set a0 = a and
b0 = b, then iterate

ak+1 = (ak + bk)/2

bk+1 =
√
ak · bk (14)

until convergence, i.e., until ak = bk to available precision.
Euler’s constant γ = 0.57721566490153286 . . . is calculated in MPFUN20-

Fort using the following formula, which is an improvement of a technique
previously used by Sweeney [37]. If a result accurate to at least B bits is
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desired, first select the integer N = dlog2(B log 2)e. Then

γ ≈ 2N

e2N

∞∑
m=0

2mN

(m+ 1)!

m∑
t=0

1

t+ 1
− N log 2. (15)

The error in this approximation is less than 1/(2Ne2N ).
The binary values of log(2), π and γ are stored to 20,000 digit precision in

data statements in module MPFUNA, in both versions. If higher precision is
required, mpinit must be called at the start of execution in a single-threaded
section of code, as explained in Section 5.2.

Exponential and logarithm. [MPFUN20-Fort only; MPFUN20-MPFR uses
the MPFR routines.] The exponential function routine first reduces the input
argument to the interval (− log(2)/2, log(2)/2]. Then it divides this value by
2q, producing a very small value, which is then input to the Taylor series for
exp(x):

exp(x) = x+
x2

2!
+
x3

3!
+ · · · , (16)

where the terms are computed with a precision level that decreases as the
terms decrease in size, thus saving approximately one-half of the total run
time. When complete, the result is squared q times, and then corrected for
the initial reduction. In the current implementation, q is set to the nearest
integer to B2/5, where B is the number of bits of precision.

Since the Taylor series for the logarithm function converges much more
slowly than that of the exponential function, the Taylor series is not used for
logarithms unless the argument is extremely close to one. Instead, logarithms
are computed based on the exponential function, by employing the following
Newton iteration with a level of precision that approximately doubles with
each iteration:

xk = xk −
ex − a
ex

. (17)

Trigonometric functions. [MPFUN20-Fort only; MPFUN20-MPFR uses the
MPFR routines.] The sine/cosine routine first reduces the input argument to
within the interval (−π, π]. This value is then divided by 2q and then input
to the Taylor series for sin(x):

sin(x) = x− x3

3!
+
x5

5!
+ · · · , (18)
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where, as with exp(x), the terms are computed with a precision level that
decreases as the terms decrease in size. Then the double-angle formulas

cos(2x) = 1− 2 sin2(x) (19)

cos(2x) = 2 cos2(x)− 1, (20)

are applied q times (formula (19) is used once, and (20) thereafter). In the
current implementation, q is set to the greatest integer in

√
2B, where B

is the precision in bits, unless the reduced argument is very close to zero,
in which case q = 0. When complete, sin(x) is computed as

√
1− cos2(x),

with corrected sign, except for the case q = 0, when cos(x) is computed as√
1− sin2(x).
The inverse cos/sin function is based on the sine routine, by employing a

Newton iteration with a level of numeric precision that roughly doubles with
each iteration.

Power function. [MPFUN20-Fort only; MPFUN20-MPFR uses the MPFR
routine.] The power function, namely ab for real a > 0 and b, can be com-
puted as eb log a. To further accelerate this operation, the software first ex-
amines the value of b to see if it is a rational number with numerator and
denominator up to 107 size, using the extended Euclidean algorithm per-
formed in double precision. If it is, ab is performed using a combination of
the binary algorithm for exponentiation for the numerator, and the n-th root
function for the denominator.

7.4 Special functions

Modern mathematical and scientific computing frequently often involves more
sophisticated functions, collectively termed “special functions” [23]. Many of
these functions have been implemented in the MPFUN20-Fort and MPFUN20-
MPFR packages, and others will be added as they are developed. Here is a
brief description of the functions that have been implemented and the algo-
rithms employed. In each case, care is taken to preserve thread safety, and
to avoid, as far as possible, any need to precalculate auxiliary data.

Even Bernoulli coefficients. [MPFUN20-Fort and MPFUN20-MPFR.] The
subroutine mpberne returns an array containing Bernoulli numbers B2k for
k = 1 to n. It employs an advanced algorithm, due to the present author
[10]: First, compute {ζ(2k), 0 ≤ k ≤ n} to P words precision based on the
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following qwell-known formulas:

coth(πx) = cosh(πx)/ sinh(πx)

=
1

πx
· 1 + (πx)2/2! + (πx)4/4! + · · ·

1 + (πx)2/3! + (πx)4/5! + · · ·

=
1

πx
·
(
1 + (πx)2/3− (πx)4/45 + 2(πx)6/945− · · ·

)
=

2

πx

∞∑
k=1

(−1)k+1ζ(2k)x2k. (21)

The strategy is to calculate the coefficients of the series by polynomial op-
erations. Polynomial division is performed by computing the reciprocal of
the denominator polynomial, by a polynomial Newton iteration, as follows.
Let N(x) be the polynomial approximation to the numerator series; let D(x)
be a polynomial approximation to the numerator numerator series; and let
Qk(x) be polynomial approximations to R(x) = 1/D(x). Then iterate:

Qk+1 = Qk(x) + [1−D(x)Qk(x)]Qk(x). (22)

In these iterations, both the degree of the polynomial Qk(x) and the precision
level in words are initially set to 4. When convergence is achieved at this
precision level, the degree is doubled, and iterations are continued, etc., until
the final desired degree is achieved. Then the precision level is doubled and
iterations are performed in a similar way, until the final desired precision level
P is achieved. The reciprocal polynomial R(x) produced by this process is
then multiplied by the numerator polynomial N(x) to yield an approximation
to the quotient series. The even zeta values are then the coefficients of this
series, scaled according to the formula (21)above.

Once the even integer zeta values have been computed, the even Bernoulli
coefficients are computed via this well-known formula (for n > 0):

B2n =
(−1)n−1 2(2n)!ζ(2n)

(2π)2n
. (23)

Aside from requiring π, which is a compile-time constant, the code imple-
menting this function does not rely on any stored data, and so is thread-safe.
The library subroutine name is mpberne (see Table 5).

BesselI function. [MPFUN20-Fort and MPFUN20-MPFR.] The BesselI func-
tion, or, more formally, the modified Bessel function of the first kind, is
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defined as [23, 10.25.2]:

Iν(z) =
(z

2

)ν ∞∑
k=0

(
z2

4

)k
k!Γ(ν + k + 1)

(24)

For modest-sized z, this function can be evaluated directly according to this
definition, terminating the summation when terms are smaller than epsilon
times the current sum. For larger z (the author uses the condition |z| > 0.4B,
where B is the precision in bits), the following asymptotic formula is faster
[23, 10.40.1]:

Iν(z) ≈ ez√
2πz

∞∑
k=0

(−1)kak(ν)

zk
, (25)

where

ak(ν) =
(4ν2 − 12)(4ν2 − 32) · · · (4ν2 − (2k − 1)2)

8kk!
. (26)

Aside from requiring π, which is a compile-time constant, the code imple-
menting this algorithm does not rely on any stored data, and so is thread-safe.
The library function names are bessel i and bessel in (see Table 5).

BesselJ function. [MPFUN20-Fort only; MPFUN20-MPFR uses the MPFR
routine.] The BesselJ function, or, more formally, the Bessel function of the
first kind, is defined as [23, 10.2.2]:

Jν(z) =
(z

2

)ν ∞∑
k=0

(−1)k
(
z2

4

)k
k!Γ(ν + k + 1)

. (27)

For modest-sized z, this function can be evaluated directly according to this
definition, terminating the summation when terms are smaller than epsilon
times the current sum. However, large amounts of cancellation occurs in this
formula, so the present author’s implementation employs a working precision
P = B + 1.4|z| bits, where B is desired result precision in bits, up to 3X the
requested precision.

For larger z (the author uses the condition |z| > 0.4B, where B is the
precision in bits), the following asymptotic formula [23, 10.17.3] is faster:

Jν(z) ≈
√

2

πz

(
cos(ω)

∞∑
k=0

(−1)ka2k(ν)

z2k
− sin(ω)

∞∑
k=0

(−1)ka2k+1(ν)

z2k+1

)
, (28)
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where ω = z − πν/2 − π/4, and where ak(ν) is given by (26). Aside from
requiring π, which is a compile-time constant, the code implementing these
algorithms does not rely on any stored data, and so is thread-safe. The
library function names are bessel j, bessel jn, bessel j0 and bessel j1

(see Tables 3 and 5).

BesselK function. [MPFUN20-Fort only; MPFUN20-MPFR uses the MPFR
routine.] The BesselK function, or, more formally, the modified Bessel func-
tion of the second kind, is defined as [23, 10.31.1]:

Kn(z) =
1

2

(z
2

)−n n−1∑
k=0

(n− k − 1)!

k!

(
−z

2

4

)k
+ (−1)n+1 log

(z
2

)
In(z)

+ (−1)n
1

2

(z
2

)n ∞∑
k=0

(ψ(k + 1) + ψ(n+ k + 1))

(
z2

4

)k
k!(n+ k)!

, (29)

where the ψ(n) (digamma) function for positive integer arguments can be
evaluated from the simple formula ψ(n) = −γ+

∑n−1
k=1 1/k, where γ is Euler’s

constant. For modest-sized z, this function can be evaluated directly accord-
ing to this definition, terminating the summation when terms are smaller
than epsilon times the current sum. However, large amounts of cancellation
occurs in this formula, so the present author’s implementation employs a
working precision B + 2.8|z| bits, where B is desired result precision in bits,
up to 3X the requested precision.

For larger z (the author uses the condition |z| > 0.4B, where B is the
precision in bits), the following asymptotic formula [23, 10.40.1] is faster:

Kν(z) ≈
√

π

2z
e−z

∞∑
k=0

ak(ν)

zk
, (30)

where ak(ν) is given by (26).
In the case when the order ν is not an integer, this formula is used instead:

Kν(z) =
π(I−ν − Iν)

2 sin(νπ)
. (31)

Aside from requiring γ and π, which are compile-time constants, the code
implementing these algorithms does not rely on any stored data, and so is
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thread-safe. The library function names are bessel k and bessel kn (see
Table 5).

BesselY function. [MPFUN20-Fort and MPFUN20-MPFR.] The BesselY
function, or, more formally, the Bessel function of the second kind, is defined
as [23, 10.8.1]:

Yn(z) =
1

π

[(z
2

)−n n−1∑
k=0

(n− k − 1)!

k!

(
z2

4

)k
+ 2 log

(z
2

)
Jn(z)

+
(z

2

)n ∞∑
k=0

(ψ(k + 1) + ψ(n+ k + 1))

(
− z2

4

)k
k!(n+ k)!

 , (32)

where the ψ(n) (digamma) function for positive integer arguments can be
evaluated from the simple formula ψ(n) = −γ+

∑n−1
k=1 1/k, where γ is Euler’s

constant. For modest-sized z, this function can be evaluated directly accord-
ing to this definition, terminating the summation when terms are smaller
than epsilon times the current sum. However, large amounts of cancellation
occurs in this formula, so the present author’s implementation employs a
working precision P = B + 1.4|z| bits, where B is desired result precision in
bit, up to 3X the requested precision.

In the case when the order ν is not an integer, this formula is used instead:

Yν(z) =
Jν cos(νπ)− J−ν

sin(νπ)
. (33)

For larger z (the author uses the condition |z| > 0.4B, where B is the
precision in bits), the following asymptotic formula [23, 10.17.4] is faster:

Jν(z) ≈
√

2

πz

(
sin(ω)

∞∑
k=0

(−1)ka2k(ν)

z2k
+ cos(ω)

∞∑
k=0

(−1)ka2k+1(ν)

z2k+1

)
, (34)

where ω = z − πν/2− π/4, and where ak(ν) is given by (26).
Aside for requiring γ and π, which are compile-time constants, the code

implementing these algorithms does not rely on any stored data, and so is
thread-safe. The library function names are bessel y, bessel y0, bessel y1

and bessel yn (see Tables 3 and 5).
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Digamma function. [MPFUN20-Fort and MPFUN20-MPFR; MPFUN20-
MPFR also has a separate routine from MPFR.] This evaluates the digamma
function, using the following asymptotic formula [23, 5.11.2]:

ψ(x) ≈ log(x)− 1

2x
−
∞∑
k=1

B2k

2kx2k
, (35)

where B2k are the even Bernoulli coefficients (see Even Bernoulli coefficients
above). The code implementing this algorithm is entirely thread-safe, pro-
vided the requisite even Bernoulli numbers are precomputed.

The library function name is digamma be. Before calling digamma be,
subroutine mpberne must be called to compute the even Bernoulli numbers,
where the parameter nb is at least twice the desired precision in digits, and the
resulting array and size must be included in subsequent calls to digamma be.
See Table 5.

Error functions. [MPFUN20-Fort only; MPFUN20-MPFR uses the MPFR
routines.] The error function is defined as [23, 7.6.2]:

erf (z) =
2√
πez2

∞∑
n=0

2nz2n+1

1 · 3 · · · (2n+ 1)
. (36)

This formula is satisfactory for computation unless the argument z is large,
in which case the following asymptotic expression for the error function com-
plement works better:

erfc (z) ≈ 1√
πez2

∞∑
n=0

(−1)n1 · 3 · · · (2n− 1)

2nz2n+1
. (37)

where erfc (z) = 1 − erf (z), and where the product in the numerator is 1
when n = 0. In the author’s code, (36) is used when |z| < B/100, and (37)
is used when |z| ≥ B/100, where B is the number of bits of precision. Aside
from requiring π, which is a compile-time constant, the code implementing
this algorithm does not rely on any stored data, and so is thread-safe. The
library function names are erf and erfc (see Tables 3 and 5).

Exponential integral function. [MPFUN20-Fort only; MPFUN20-MPFR uses
the MPFR routine.] The exponential integral function is evaluated using the
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following formula due to Ramanujan [24]:

Ein(z) = γ + log(|z|) + exp(z/2)
∞∑
k=1

(−1)k−1zk

2k−1k!

b(k−1)/2c∑
j=0

1

2j + 1
(38)

= −Γ(0,−z) (39)

See incomplete gamma function below for Γ(0,−z)).

Gamma function. [MPFUN20-Fort only; MPFUN20-MPFR uses the MPFR
routine.] The gamma function employs a very efficient but little-known for-
mula due to Ronald W. Potter [36] for most values, combined with a sepa-
rate formula for values close to one. If the input t is a positive integer, then
Γ(t) = (t − 1)!. If not, use the recursion Γ(t + 1) = tΓ(t) to reduce the
argument (positive or negative) to the interval (0, 1). If 1− 1/1010 < t < 1,
then employ this formula from the DLMF [23, 5.7.3]:

log(Γ (1 + x)) = − log (1 + x) + x(1− γ) +
∞∑
k=2

(−1)k(ζ (k)− 1)
xk

k
, (40)

where x = t− 1 and γ is Euler’s constant, and where ζ(k) is computed using
Peter Borwein’s algorithm, as described below under Zeta. For other values
of t, define α = 2 int (b/4 · log 2+1), where b is the number of bits of precision
and int is greatest integer. Define the Pochhammer symbol as

(t)k = t(t+ 1)(t+ 2) · · · (t+ k − 1). (41)

Then define the functions

A(t, α) =
(α

2

)t
t
∞∑
k=0

(α2/4)k

k!(t)k+1

B(t, α) =
(α

2

)−t
(−t)

∞∑
k=0

(α2/4)k

k!(−t)k+1

. (42)

With these definitions, the gamma function can then be computed as

Γ(t) =

√
πA(t, α)

t sin(πt)B(t, α)
. (43)
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Aside from requiring π and γ, which are compile-time constants, the code
implementing this function does not rely on any stored data, and so is thread-
safe. The library function name is gamma (see Tables 3 and 5).

Hurwitz zeta function. [MPFUN20-Fort and MPFUN20-MPFR.] The Hur-
witz zeta function is computed by the following formula, which is a modifi-
cation of a scheme originally due to Richard Crandall [6]: Let the notation
σ(x) denote sign(x). Then for 0 < a < 1 and for s 6= 1, 0,−1,−2, · · · ,

ζ (s, a) =

√
π π(s−1)/2

(s− 1) Γ (s/2)

+
1

2

∞∑
n=−∞

(
Γ( s2 ,π (n+a)2)

Γ(s/2)
+ σ(n+ a)

Γ( s+1
2
,π (n+a)2)

Γ((s+1)/2)

)
1

|n+ a|s

+ πs−1/2

∞∑
m=1

1

m1−s

(
Γ
(

1−s
2
,m

2π2

π

)
Γ(s/2)

cos (2πma) +
Γ
(

1− s
2
,m

2π2

π

)
Γ((s+1)/2)

sin (2πma)

)
.

(44)

Although each of the individual terms are relatively expensive to compute
due to the incomplete gamma functions, convergence is quite rapid: 30 terms
produce over 1000 digits. Aside from requiring π, which is a compile-time
constant, the code implementing this function does not rely on any stored
data, and so is thread-safe. The library function name is hurwitz zetan (see
Table 5).

[MPFUN20-Fort and MPFUN20-MPFR.] An even faster formula, which
relies on precomputed even Bernoulli numbers (see Even Bernoulli numbers
above), is as follows. Select an integer q > 0 (the present author uses q =
nint (0.6d), where d is the precision in digits and nint is nearest integer).
Then

ζ(s, a) =

q−1∑
k=0

1

(a+ k)s
+

1

(s− 1)(a+ q)s−1
+

1

2(a+ q)s

+
∞∑
k=1

B2k s(s+ 1) · · · (s+ 2k − 2)

(2k)!(a+ q)s+2k−1
. (45)

The code implementing this function (hurwitz zetan be) relies only on pre-
computed even Bernoulli numbers, and thus is thread-safe. Before calling
hurwitz zetan be, subroutine mpberne must be called to compute the even
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Bernoulli numbers, where the parameter nb is at least twice the desired preci-
sion in digits, and the resulting array and size must be included in subsequent
calls to hurwitz zetan be (see Table 5).

Hypergeometric pFq function. [MPFUN20-Fort and MPFUN20-MPFR.] The
hypergeometric pFq function is defined as:

pFq

(
a1, a2, · · · , ap;x
b1, b2, · · · , bq

)
=
∞∑
k=0

(a1)k(a2)k · · · (ap)k xk

(b1)k(b2)k · · · (bq)k k!
, (46)

where (s)n = s(s+1)(s+2) · · · (s+n−1) is the Pochhammer symbol as before.
This formula is evaluated directly as stated, terminating the summation when
terms are smaller than epsilon times the current sum. Note that the terms
satisfy a relatively simple recursion. The code implementing this function
does not rely on any stored data, and so is thread-safe. The library function
name is hypergeom pfq (see Table 5).

Incomplete gamma function. [MPFUN20-Fort only; MPFUN20-MPFR uses
the MPFR routine.] For modest-sized positive arguments (the author uses
the condition |z| < 0.833B, where B is the precision level in bits), the
MPFUN20-Fort incomplete gamma function is evaluated using the follow-
ing formula [23, 8.7.3]:

Γ(a, z) = Γ(a)

(
1− za

ez

∞∑
k=0

zk

Γ(a+ k + 1)

)
. (47)

Note, as with the BesselJ function, that although formula (47) involves the
gamma function, this is only called once to compute Γ(a + 1), after which
the recursion Γ(t+ 1) = tΓ(t) can be applied for all other terms.

For large values of z, the following asymptotic formula is used [23, 8.11.2]:

Γ(a, z) ≈ za−1

ez

∞∑
k=0

(−1)k(1− a)k
zk

. (48)

For the case a = 0, the following formula is employed, which is a modification
of a formula due to Ramanujan for the exponential integral function [24]:

Γ(0, z) = −γ − log(|z|) + exp(−z/2)
∞∑
k=1

zk

2k−1k!

b(k−1)/2c∑
j=0

1

2j + 1
. (49)
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For z < 0, formula (??) returns the correct real part of the complex value.
For a = −1,−2, · · · , the following formula is employed [31]:

Γ(−n, z) =
1

n!

(
(−1)nΓ(0, z) +

1

ezzn

n−1∑
k=0

(−1)k(n− k − 1)!zk

)
. (50)

One difficulty is that cancellation may occur in formulas (49) and (50), so for
certain arguments the working precision is increased, up to 3X the requested
precision. Aside from requiring Euler’s constant γ in the formula for Γ(0, z),
the code implementing this function does not require any saved data and
thus is thread-safe. The library function name is incgamma (see Table 5).

Polygamma function. [MPFUN20-Fort and MPFUN20-MPFR.] The polygamma
function is evaluated using the Hurwitz zeta function via the formula [29]

ψ(m) = (−1)m+1m!ζ(m+ 1, z). (51)

See Hurwitz zeta function above for details. The library function name is
polygamma; an alternate function name is polygamma be, requiring precom-
puted even Bernoulli numbers (see Table 5).

Polylogarithm function. [MPFUN20-Fort and MPFUN20-MPFR.] The poly-
logarithm function for integer order n is defined as [23, 25.12.10]:

Lin (z) =
∞∑
k=1

zk

kn
(52)

This is satisfactory for computation for n ≥ 1 and |z| < 1. When n = 0, one
uses the formula Li0(z) = z/(1 − z). For negative order n, one can use the
formula [40]:

Li−n(z) =
1

(1− z)n+1

n∑
k=1

an,kz
k, (53)

where the coefficients an,k are given by the recurrence

an,k = (n+ 1− k)an−1,k−1 + kan−1,k, (54)

with an,1 = 1. One difficulty is that cancellation may occur in formula (53),
so for certain arguments the working precision is increased, up to 3X the
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requested precision. Since the requisite auxiliary data is precomputed and
passed via argument, the code implementing these algorithms is thread-safe.

Because of the different algorithms and data requirements, MPFUN2020
includes three routines for polylogarithms, namely polylog ini, polylog neg

and polylog pos. Before calling polylog neg, subroutine polylog ini must
be called to compute the coefficients an,k for the given value of n, and the
resulting array and size must be included in subsequent calls to polylog neg

(see Table 6).

StruveH fuction. [MPFUN20-Fort and MPFUN20-MPFR.] The StruveH
function is defined for positive integer order n as [23, 11.2.1]:

Hn(z) =
(z

2

)n+1
∞∑
k=0

(−1)k(z/2)2k

Γ(k + 3/2)Γ(n+ k + 3/2)
. (55)

This formula is evaluated as stated. As with the BesselJ function, the gamma
function references here can be computed iteratively, starting with the fact
that Γ(3/2) =

√
π/2. One difficulty is that due to the alternating sign in the

numerator, precision is lost due to cancellations. In the author’s code, this
is overcome by employing B + B|z|/1000 bits of precision, where B is the
number of bits desired for the result, up to 3X the requested precision. Aside
from requiring π, which is a compile-time constant, the code implementing
this function does not rely on any stored data, and so is thread-safe. The
library function name is struve hn (see Table 6).

Zeta function. [MPFUN20-Fort only; MPFUN20-MPFR uses the MPFR
routine.] For large positive arguments s (the present author uses the condi-
tion s > B log(2)/ log(2B/3)), where B is the precision in digits), it suffices
to use the definition of zeta, namely

ζ(s) =
∞∑
n=1

1

ns
. (56)

For modest-sized arguments, the zeta function can be evaluated by means of
this formula, due to Peter Borwein [18]. Select n to be the number of digits
of precision required for the result. Define

ej = (−1)j

(
j−n∑
k=0

n!

k!(n− k)!
− 2n

)
, (57)
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where the empty sum is zero. Then

ζ(s) ≈ −1

2n(1− 21−s)

2n−1∑
j=0

ej
(j + 1)s

. (58)

The above formulas are used for positive real arguments (except s = 1, for
which the zeta function is undefined). For negative s, Riemann’s reflection
formula is used to convert the calculation to a positive argument:

ζ(s) =
2 cos(π(1− s)/2)Γ(1− s)ζ(1− s)

(2π)1−s . (59)

Aside from the value of π, no auxiliary data for this algorithm required, so
the code implementing these algorithms is thread-safe. The library formula
names are zeta and zeta int (see Table 6).

[MPFUN20-Fort and MPFUN20-MPFR.] An even faster algorithm for
the zeta function, based on the Euler-Maclaurin summation formula, can be
derived from the following [23, 25.2.9]: Select an integer parameter N > 0
(the present author uses N = nint (0.6d), where d is the precision in digits
and nint is nearest integer). Then

ζ(s) =
N∑
k=1

1

ks
+

1

(s− 1)N s−1
− 1

2N s
+
∞∑
k=1

(
s+ 2k − 2

2k − 1

)
B2k

2kN s−1+2k
, (60)

where B2k are the even Bernoulli numbers (see Even Bernoulli numbers
above). The library function name is zeta be. Before calling zeta be, the
subroutine mpberne must be called to compute the even Bernoulli numbers,
where the parameter nb is greater than twice the desired precision in dig-
its, and the resulting array and size must be included in subsequent calls to
zeta be (see Table 6).
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