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Abstract

Earlier studies have explored the intriguing phenomenon of algebraic numbers arising from a
simple two-dimensional instance of the Poisson potential function of mathematical physics:

φ2(x, y) =
1

π2

∑
m,n odd

cos(mπx) cos(nπy)

m2 + n2
.

In this paper, we address the closely related function (even indices instead of odd, excluding (0, 0)):

ψ2(x, y) =
1

π2

∑
m,n even′

cos(mπx) cos(nπy)

m2 + n2
.

As with φ2(x, y), it is known from an earlier study that when x and y are rational numbers, then
ψ2(x, y) = 1/π · log(β(x, y)), where β(x, y) is an algebraic number of some degree m.

In this paper we present formulas and techniques for rapid numerical computation of ψ2(x, y),
corrected from an earlier study, together with an initial catalogue of the minimal polynomials satisfied
by α = exp(8πsψ2(x, y)). These computations, which are much more challenging than with φ2(x, y),
cover the cases (x, y) = (p/s, q/s), where 1 ≤ p ≤ q < s/2 and gcd(p, q, s) = 1, for 10 ≤ s ≤ 25
and also for s = 26, 28, 30, 32, 34, 36, 40, a total of 1,017 cases. With this catalogue of computational
results in hand, we note several intriguing regularities, including (tentatively): (a) a variant of
Kimberley’s formula that gives the degrees of the minimal polynomials; and (b) the fact that for
a given s, all the cases (x, y) = (p/s, p/s), with 1 ≤ p < s/2 and gcd(p, s) = 1, share the same
minimal polynomial. These polynomials typically do not exhibit the palindromic property observed
for φ2(p/s, q/s) when s is even.

1 Earlier work on Poisson polynomials

Lattice sums related to the Poisson potential function naturally arise in studies of gravitational and
electrostatic potentials, and have been studied in the mathematical physics community for many years
[1, 9, 13, 14, 18]. Lord Rayleigh, in his 1892 paper, mentions Lorenz as the inventor of the concept
[16]. More recently, researchers have identified applications in practical image processing [5]. These
developments have underscored the need to better understand the underlying mathematical theory.

In two earlier papers [5, 6], Jonathan Borwein (deceased 2016), Richard Crandall (deceased 2012)
and I. J. Zucker analyzed a simple two-dimensional instance of the Poisson potential function:

φ2(x, y) =
1

π2

∑
m,n odd

cos(mπx) cos(nπy)

m2 + n2
. (1)

These researchers empirically discovered and then proved the intriguing fact that when x and y are
rational numbers, then

φ2(x, y) =
1

π
log(β(x, y)), (2)
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where β(x, y) is an algebraic number, namely the root of a degree-m minimal polynomial with integer
coefficients, for some m.

This result can be explored computationally as follows: Given rationals x, y and an integerm, compute
α = exp(8πφ2(x, y)) to high precision, generate the (m+1)-long vector (1, α, α2, · · · , αm), and then apply
an integer relation algorithm to discover the coefficients of the polynomial of degree m, if it exists, satisfied
by α. It is not practical to numerically evaluate φ2(x, y) by the defining formula (1), but Borwein and
Crandall discovered rapidly computable formulas for φ2(x, y) in terms of theta functions [5].

Based on some initial computational results, Jason Kimberley of the University of Newcastle, Aus-
tralia observed that the degree m(s) of the minimal polynomial associated with the special case (x, y) =
(1/s, 1/s) appears to be given by the following number-theoretic rule [6]: Set m(2) = 1/2. Otherwise for
primes p congruent to 1 modulo 4, set m(p) = (p− 1)2/4, and for primes p congruent to 3 modulo 4, set
m(p) = (p2 − 1)/4. Then for any other positive integer s whose prime factorization is s = pe11 p

e2
2 · · · perr ,

m(s) = 4r−1
r∏
i=1

p
2(ei−1)
i m(pi). (3)

Subsequent computations confirmed that Kimberley’s formula holds for (x, y) = (1/s, 1/s) for all
integers s up to 40, and also for most even integers up to 64. By doing Google searches on the coefficients
of the resulting polynomials, the authors found a connection to a 2010 paper by Savin and Quarfoot [17].
These investigations ultimately led to a proof, given in [6], that Kimberley’s formula (3) is valid in the
special case (x, y) = (1/s, 1/s), and, when s is even, the minimal polynomials for (x, y) = (1/s, 1/s) are
palindromic (i.e., coefficient ak = am−k, where m is the degree).

In [3, 4] these computations were extended to the much larger set of mixed arguments, namely
(x, y) = (p/s, q/s), where 1 ≤ p ≤ q < s/2 and gcd(p, q, s) = 1, for 10 ≤ s ≤ 36 and also for s = 38, 40, 42
and s = 50, a total of 2,206 cases. With this extensive catalogue of computational results in hand, we
were able to note (tentatively): (a) a variant of Kimberley’s formula that gives the degrees; (b) the fact
that for a given s, all the cases (x, y) = (p/s, p/s), with 1 ≤ p < s/2 and gcd(p, s) = 1, share the same
minimal polynomial; and (c) the fact that whenever s is even, the minimal polynomials are palindromic.

2 The Poisson psi function

The 2013 study [5] also mentioned the closely related function

ψ2(x, y) =
1

π2

∑
m,n even′

cos(πmx) cos(πny)

m2 + n2
, (4)

which differs from φ2(x, y) by replacing odd indices with even, excluding (m,n) = (0, 0). The ψ2(x, y)
function is the natural potential for a classical “jellium” crystal, namely a structure with a positive charge
at every integer lattice point, in a bath (a jelly) of uniform negative charge density [11]. As with φ2(x, y),
the authors of [5] were able to show that when x and y are rational, then ψ2(x, y) = 1/π · log(β(x, y))
for some algebraic β(x, y).

It is not possible to numerically compute ψ2(x, y) by formula (4), since millions of terms are required
to obtain even a few correct digits. Thus a key breakthrough in this research was the discovery, due to
Borwein and Crandall, of formulas permitting fast computation of both φ2(x, y) and ψ2(x, y) [5, Thm. 9]
(the formulas given for ψ2(x, y) in [5] are flawed, thus preventing computer exploration; they are corrected
below). These formulas, in turn, are based on the following two formulas (the second was incorrectly
presented in earlier literature, but was corrected in [5]):

φ2(x, y) =
1

4π
log |A(z, q)|, (5)

ψ2(x, y) =
x2

2
+

1

4π
log

(
Γ(1/4)√
8πΓ(3/4)

)
− 1

2π
log
∣∣θ1(2z, e−π)

∣∣ , (6)
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where q = e−π, z = π/2 · (y + ix), A(z, q) = (θ22(z, q)θ24(z, q))/(θ21(z, q)θ23(z, q)), and the theta functions
are defined below. Based on these formulas, the authors of [5] derived the following equivalents, which
we present here in corrected form and with less ambiguous notation:

φ2(x, y) =
1

2π
log

∣∣∣∣θ2(z, q)θ4(z, q)

θ1(z, q)θ3(z, q)

∣∣∣∣ =
1

4π
log

∣∣∣∣∣ 1− λ(z, q)/
√

2

1− 1/(λ(z, q)
√

2)

∣∣∣∣∣ , (7)

ψ2(x, y) = − 1

4π
log
∣∣∣2µ(2z, q)

(√
2λ(2z, q)− 1

)∣∣∣ , (8)

where Im(z) denotes imaginary part, and

λ(z, q) =
θ24(z, q)

θ23(z, q)
=

∞∏
n=1

(1− 2 cos(2z)q2k−1 + q4k−2)2

(1 + 2 cos(2z)q2k−1 + q4k−2)2
, (9)

µ(z, q) = exp
(
−2 Im2(z)/π

) θ23(z, q)

θ23 (0, q)
= exp

(
−2 Im2(z)/π

) ∞∏
n=1

(1 + 2 cos(2z)q2k−1 + q4k−2)2

(1 + q2k−1)4
. (10)

The theta functions can be computed using the following rapidly convergent formulas from [8, pg. 52]:

θ1(z, q) = 2

∞∑
k=1

(−1)k−1q(2k−1)
2/4 sin((2k − 1)z),

θ2(z, q) = 2

∞∑
k=1

q(2k−1)
2/4 cos((2k − 1)z),

θ3(z, q) = 1 + 2

∞∑
k=1

qk
2

cos(2kz),

θ4(z, q) = 1 + 2

∞∑
k=1

(−1)kqk
2

cos(2kz). (11)

The present author has implemented three variations of these formulas, using both Mathematica and
a high-precision software package: (a) formulas (5) and (6); (b) formulas (7) through (11) with the first
parts of (9) and (10); and (c) formulas (7) through (11) with the second parts of (9) and (10). All three
agree on test problems, and run times are within a factor of two. Option (b) was employed below.

The study [5] included several explicit evaluations for ψ2(x, y), but one of these was in error. Here is
a corrected collection, with two additional results due to the present author:

ψ2(1/3, 1/3) =
1

24π
log

(
2
√

3− 3

9

)
,

ψ2(1/4, 1/4) =
1

16π
log(1/2),

ψ2(1/5, 1/5) =
1

40π
log

(
−709

2
+

319

2

√
5 + 3

√
28090− 12562

√
5

)
,

ψ2(1/6, 1/6) =
1

12π
log(2 +

√
3),

ψ2(1/8, 1/8) =
1

64π
log

(
1737169

2
+ 614182

√
2 + 4

√
2
(

47152440367 + 33341810333
√

2
))

,

ψ2(1/10, 1/10) =
1

80π
log

[
283373459287

2
+

126728463597
√

5

2

+12

√
2
(

139410620535209513705 + 62346324860431317259
√

5
)]

. (12)
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In this paper, we describe the computation of minimal polynomials for α = exp(8πsψ2(x, y)) (which,
as can be seen above, is a natural form for this study), for all (x, y) = (p/s, q/s), where 1 ≤ p ≤
q < s/2, for 10 ≤ s ≤ 25, and also for s = 26, 28, 30, 32, 34, 36 and 40, a total of 1,017 cases. These
computations and analyses are significantly more challenging than with φ2(x, y), requiring much higher
numeric precision (up to 150,000 digits) and much longer run times (typically 100X or more, compared
to equivalent φ2(x, y) cases). See Table 3 below for some statistics.

Some high-level details of the algorithms and techniques employed in this study are given in Sections
3 through 6 below, parts of which are adapted and condensed from an earlier φ2(x, y) study [4].

3 Finding minimal polynomials using integer relation algorithms

Given an n-long input vector v = (vi, 1 ≤ i ≤ n) of real numbers, typically given as high-precision
floating-point values, an integer relation algorithm attempts to find integers (ai), not all zero, such that

a1v1 + a2v2 + · · ·+ anvn = 0, (13)

to within the tolerance of the numeric precision being used.
If one suspects that a high-precision floating-point value α is an algebraic number of degree m, one

may compute the (m+ 1)-long vector X = (1, α, α2, · · · , αm) to high precision and then apply an integer
relation algorithm. If an integer relation (ai) is found for X, then the resulting vector of integers may
be the coefficients of an integer polynomial of degree m satisfied by α, subject to further verification.

As an illustration, suppose one suspects that the real constant α, whose numerical value to 40
digits is 2.1195912698291751313298483349346871106280 . . ., is an algebraic number of degree eight. After
computing the vector (1, α, α2, · · · , α8), say to 100-digit precision, and applying the multipair PSLQ
integer relation algorithm (see next section), the relation (1,−216, 860,−744, 454,−744, 860,−216, 1) is
produced, so that α appears to satisfy the polynomial 1 − 216α + 860α2 − 744α3 + 454α4 − 744α5 +
860α6−216α7 +α8 = 0. Maple or Mathematica may then be used to verify that the resulting polynomial
is irreducible; alternatively, one may attempt to recover an integer relation with the degree reduced by
one, and verify that no numerically significant relation is produced with this smaller degree.

4 The three-level multipair PSLQ algorithm

The multipair PSLQ algorithm [7] is an efficient and moderately parallelizable variant of PSLQ, a widely
used integer relation algorithm. Variants of the LLL algorithm are also used [10]. For convenience, full
statements of the PSLQ and multipair PSLQ algorithms are presented below in Section 9.

In brief, given an n-long input vector v, the multipair PSLQ algorithm generates a sequence of
invertible n × n integer matrices Ak, their inverses Bk and real n × (n − 1) matrices Hk, so that the
reduced vector w = Bk · v has steadily smaller entries, until one entry of w is smaller than the specified
epsilon (with the relation given in the corresponding row of Bk), or else precision is exhausted.

Integer relation detection by any algorithm requires very high numeric precision. It can be seen from
a combinatorial argument that one must employ at least n ·maxi log10 |ai| digits, or else the true relation
will be lost in a sea of numerical artifacts. Multipair PSLQ can typically detect a relation when the
numeric precision is only a few percent higher than this minimum bound [7].

The computations in this study employed a three-level variable precision implementation of the
multipair PSLQ algorithm [7]: (a) double precision (15 digits); (b) medium precision (typically 500
to 10,000 digits); and (c) full precision (typically 10,000 to 150,000 digits). With this scheme, almost all
iterations of the multipair PSLQ algorithm are performed very rapidly using ordinary double precision
(DP) floating-point arithmetic. When an entry of the DP w vector is smaller than 10−14, or when an
entry of the DP A or B array exceeds 1013, the medium precision arrays are updated from the DP arrays
using matrix multiplication via the formulas

w := B̂ · w, B := B̂ ·B, A := Â ·A, H := Â ·H, (14)
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where the hat notation indicates DP arrays. When an entry of the medium precision w vector is smaller
than the medium precision epsilon, or when an entry of the medium precision A or B array nearly
exceeds the largest integer value exactly representable in medium precision, then the full precision arrays
are updated from the medium precision arrays using similar formulas. On large problems the three-level
scheme is typically 100X faster than a straightforward implementation using only full precision.

Considerable care must be taken in this implementation to correctly detect when precision has been
exhausted at each level, to reliably process the handoff to higher or lower level of precision, and to recover
from a situation where an iteration must be abandoned due to precision overflow. Also, advanced multi-
precision arithmetic techniques, such as fast Fourier transform (FFT)-based multiplication, are required
to obtain optimal performance on large problems. For full details see [7, 3].

5 Numerical reliability

While these computations do not constitute formal mathematical proofs, with some care these results can
be very reliable. Figure 1 illustrates the process of finding a relation using the scheme described above.
In particular, the graph shows the base-10 logarithm of the minimum absolute value of the w vector
(vertical axis), plotted against the iteration number (horizontal axis), in the multipair PSLQ computer
run that produced the 36-degree minimal polynomial corresponding to the case (x, y) = (1/13, 1/13).

Note that as the algorithm proceeds, the minimum absolute value of the w vector steadily decreases,
from approximately 10−753 to approximately 10−3874, but at iteration 17,021 abruptly drops to ap-
proximately 10−6000, a drop of 2126 orders of magnitude. Note that since the run employed 6000-digit
precision, the value 10−6000 is effectively zero, so the algorithm terminates here. In other words, the
polynomial relation found by the computer run holds to roughly 2126 digits beyond the precision level
required to discover it. This dynamic range at the iteration of detection can thus be considered a “con-
fidence level” of the result’s numerical reliability. In the computer runs for the present study, all results
obtained by multipair PSLQ runs exhibited a dynamic range of at least several hundred digits, and in
most cases several thousand digits.

Additionally, in every case studied below, the set of coefficients found for a ψ2(x, y) polynomial has
shape akin to an asymmetric parabola, with small coefficients at the start (often ±1), a maximum size
near the middle and small again at the end. Table 1 (shown in a very small font), presents the degree-36
minimal polynomial found by the author’s program for the case (x, y) = (1/13, 1/13), and Table 2 presents
the degree-32 minimal polynomial found by the author’s program for the case (x, y) = (1/24, 9/24). Each
is typical of Poisson ψ2(x, y) polynomials, in that the initial coefficient is ±1, then coefficients ascend to
a maximum size (here roughly 10106 and 10130, respectively), and then descend back down to ±1.

This asymmetric parabolic pattern, from tiny to huge to tiny, is strong numerical evidence that
the polynomial produced by the computer program is the true minimal polynomial associated in these
cases, and that all hardware, software and application code performed flawlessly, since otherwise it is
exceedingly unlikely that the final set of coefficients would have this distinctive and highly improbable
pattern. By contrast, in cases where the program fails to find a numerically significant relation, say due
to a coding bug, insufficient degree or insufficient precision, the resulting erroneous integer coefficients
typically are all roughly the same size, within one or two orders of magnitude, as if generated by a uniform
pseudorandom generator. Visually speaking, an erroneous set of coefficients appears as a rectangle rather
than an asymmetric parabola.

6 High-level computational algorithm

As mentioned above, a key breakthrough in the study of these Poisson polynomials was the discovery, by
Borwein and Crandall, that both φ2(x, y) and ψ2(x, y) can be numerically computed very rapidly using
theta functions from the theory of elliptic functions. Unfortunately, the formulas given in [5] for ψ2(x, y)
are flawed, but were presented above (Section 2) in corrected form. In particular, here is the high-level
algorithm employed in this study to discover the ψ2(x, y) polynomials:
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+1α0

−102008900α1

+3386359201083610α2

−45767430603522450027036α3

+235847871430876886823255114847α4

−401808595154612767463343530401906914α5

+322639319964424434060996969082765345466492α6

−128935196503678705655858436162015626186093449926α7

+25436615172069503982520994725239785566535224759940543α8

−1835635719561759818191190195010167655727243690089160673300α9

+129524292842384780491187097906105207534455460055928556272450511α10

−5064396407665154813418840619774597239924756002045577036668076918794α11

+119351474020211942432679618099379351018638670800160392135616726563072711α12

−2244708253496400477104375428540337510408970027526179623030216898818137766158α13

−87078600490613378309622698107527980825554751271865626702148647920682745570459492α14

−1406389080545060285674447683929282293450220435935950931746315677313494777509752153540α15

−11385758025544894256777580187724170623548231894685569115823999541381295965034361390310766α16

−44347113945558467770740466217677813592055855813151818083926242673174104041251410550289108570α17

−80429185025989342326260671278545693084765048296838517878180425659177548133403135037628619391495α18

−77609248260769943513410458481207691243839342627537879670899344586106350662197049443332137670614362α19

−98486972960286935058597427475158752725797778389800280769867546432109358430923241788144135117573940304α20

−19691650910856128072634805952617347998676439947282286453500751513147370138979643245990858532945372205916α21

+9309918787385892745969832005705814375571916352095853488486481765483651912350877087306889144827987050001α22

−10666456010828537705779226209323363878808505533903398027164503085831057882487559536838578911597301076755566α23

+35417729396764306114176298929528437318517945311027155476423311084618888515386368438403158935694752015480023α24

+116069960465502784558571674771638887485284225126865778906578570502032851030687844459268172813358665411435964α25

+88132483352713667203878899386387713168899609351477674287372969651847488830739590638623572177021368148034789α26

+16670738003069103451688809770087989389245830144911912162421647687133703545025155594912685216701709687122038α27

−704710382216061226800533124363494579736487582187308414415772397548018470271791769799111032904540109122α28

+19048352579408034314863705586816139277544588932269608909710967729758295491903807063932456206459754α29

+68580137505147132181935000960252629098842613956757125605920012162434025444432022368938776789α30

−24285212219813436632015043742897927878464829153650245387685427372653242794182945316036α31

−150937181998961371940762728692330965504227666747719379967841633525298631117α32

−967710126182231085867777501101834999529007048488756535637943516α33

−28762174084177125784616045605304469197998473823997α34

+34626289697017167900469550986α35

+1α36

Table 1: Degree-36 minimal polynomial found for the case (x, y) = (1/13, 1/13)

−1α0

+1517633683648α1

−1070321074199615864014608α2

+16077000969458841149573721377618496α3

+53253961818839176921480046407827973771835784α4

+102154152904859512445035585931300928840268254701665472α5

−3551347239466551035354625388711831487101502239021445067896624α6

−554863910246571490047397481563908101743994016452066819866994995540416α7

−45606862513530088040452607597969504556422554072162984621956809417954261639964α8

+67029192216792761498150268970392892886143008837759330529905911620193037301764553664α9

−5959051959056946035884621922443859926952052719779136245469824937148922153443758376275603472α10

+100048740278267488042048256861542700373055776478792172039345529702151821895599229718834514266671936α11

−350177363341451941455035658205833596702341009743576501156651113523159226127638586494609376001647233636680α12

+8814729745545922491572017755361775915248235566872784998963980884703813599881526673160504134666316139180788672α13

−118549312366609619628564149980792313147852701945571355416016878859311109215178021209826764350986045630608718881200α14

+1241897692448032242972131719205820982010409163562057582439093003775394934215762410813495185682821857533300214576274240α15

−10299418656675003039713105958750916805936644254851417807510135656129917223663690262268488974648190055825022523675666070086α16

+55713866140127380263944249532112996227584354249728394779150451546498237777975285042730441797650982277540606313237223500751424α17

−41749798666196936951020785485533080031397760552062854934680280903157799895268543941088178814856749264350724193106856105512339888α18

+9632823908954222671287610355121423378531387927814978959808621286136885878330902821048299415748336553127531289534097584957858107072α19

−11551289757913612276450533090614926244297746109376075269750607121561452684971489097294243425699820278510652965090985700771830167880α20

+7581045804115506622055256875598318466133829932267266821931435536201356096214451681981537286482953410270345939351609640051388325440α21

−13711827375349368341356429934138574625810093543404566416080488764580844996686845561483961668596801214438529818632590631591090192α22

+8943733691315070401772198348673718494825466221863028554303848239310682252790357434697240184663146429806351230614952990614208α23

−231168405849276056952084673193189393782715211765239995759443105968570598164831286457772152433253126803768511861583979292α24

+7298497034713894033798217384697909593232608343573489039687067768728434248093426196233428083857318025603391227072832α25

−31348181453467066769634581174423581368523743044720131864241967549072982483880966000813908519345897575923504α26

−125983281723249988735636152804856965060441480145862833730383442926970841992531803334073340933801024α27

−108397961801245459860567796763706983264832823455262849002828973202977187842059921304757880α28

+319994525123437142325919236048329182301605258362894026779337231829219977439552α29

−697418281407673477776633103742501391603178855541498424588651024144α30

+1555159273351465815964524939895744α31

−1α32

Table 2: Degree-32 minimal polynomial found for the case (x, y) = (1/24, 9/24)
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Figure 1: Plot of log10 mini |wi| in the multipair PSLQ computer run for the case (x, y) = (1/13, 1/13),
showing the detection of the relation at iteration 17,021.

1. Given rationals (x, y) = (p/s, q/s), typically satisfying 1 ≤ p ≤ q < s/2 for s ≤ 40, with
gcd(p, q, s) = 1, select a conjectured minimal polynomial degree m (say from Kimberley’s rule), a
medium precision level P1 digits, a full precision level P2 digits and other parameters for the run.

2. Calculate ψ2(x, y) to P2-digit precision using the formula (from Section 2 above)

ψ2(x, y) = − 1

4π
log
∣∣∣2µ(2z, q)

(√
2λ(2z, q)− 1

)∣∣∣ ,
where q = e−π, z = π/2 · (y + ix), Im(z) denotes imaginary part, and

µ(z, q) = exp
(
−2 Im2(z)/π

) θ23(z, q)

θ23 (0, q)
, λ(z, q) =

θ24(z, q)

θ23(z, q)
. (15)

Compute θ3(z, q) and θ4(z, q) using the following rapidly convergent formulas from [8, pg. 52]:

θ3(z, q) = 1 + 2

∞∑
k=1

qk
2

cos(2kz),

θ4(z, q) = 1 + 2

∞∑
k=1

(−1)kqk
2

cos(2kz). (16)

3. Calculate α = exp(8πsψ2(x, y)) to P2-digit precision and generate the (m + 1)-long vector X =
(1, α, α2, · · · , αm).

4. Apply a three–level multipair PSLQ algorithm to find a numerically significant integer relation for
X, if one exists (see Sections 4, 5 and 9).
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5. If a numerically significant relation is not found, try again with a larger degree m and/or higher
precision P2. If a tentative relation is found, employ Mathematica or Maple to ensure that the
resulting polynomial is irreducible. If it is not, rerun the problem with reduced degree m, until a
degree m is found that produces a numerically significant relation passing the irreducibility test.

Previous computations in the φ2(x, y) study, as catalogued in [4], found that whenever s is even, the
corresponding minimal polynomial is always palindromic, i.e., coefficient ak = am−k, where m is the
degree. In such cases, one can apply the fact that if α satisfies a palindromic polynomial of degree m,
then α+1/α satisfies a polynomial of degree m/2 (thus greatly reducing the run time), and the degree-m
polynomial satisfied by α can then be easily reconstructed from the degree-m/2 polynomial satisfied by
α + 1/α [15]. Unfortunately, hardly any of the minimal polynomials found in the present study exhibit
the palindromic property, either for odd s or even s, so no computational savings of this type is possible
in these runs. However, as it turns out, the costs of the ψ2(p/s, q/s) runs with even s are typically much
less than for odd s of similar size, since the degrees and coefficients are smaller.

7 Results and analysis

It can be seen from formula (4) that ψ2(a+ x, b+ y) = ψ2(x, y), for any integers a, b, so there is no need
to consider the cases (x, y) = (p/s, q/s), where either p or q is negative or where either p or q exceeds
s. In fact, by symmetry it follows that only cases where 1 ≤ p ≤ q < s/2, with gcd(p, q, s) = 1, need be
examined, since otherwise these cases are equivalent to cases with smaller p, q and s.

For this study, 1,017 individual cases were run, using the algorithms and software described in Sections
3 through 6. In particular, these cases are: (x, y) = (p/s, q/s), where 1 ≤ p ≤ q < s/2, gcd(p, q, s) = 1,
for 10 ≤ s ≤ 25 and also for s = 26, 28, 30, 32, 34, 36 and 40. Some of these runs required up to 150,000-
digit arithmetic. The minimal polynomials produced by these runs have coefficients as large as 10920.
Run times are typically 50–125X higher than the times for the corresponding φ2(x, y) cases. The output
files, with the full recovered polynomials, are quite large but are available from the author. Statistics for
a brief selection of these runs are shown in Table 3.

Most of these runs were performed on an Apple Mac Studio computer with an M4 Max processor and
14 cores. The application program implementing the algorithm described above in Section 6 was coded
using an arbitrary precision package, written by the present author, with a high-level language interface
and FFT-based multiplication, which greatly accelerates very high precision computation [2, 3]. The
resulting performance is comparable to that of MPFR [12], but with a high-level programming interface
and a much simpler software installation process.

For each of these cases, the computer run exhibited a drop of at least several hundred orders of mag-
nitude at detection and, in most cases, to several thousand orders of magnitude. Thus the polynomials
produced by these calculations hold to hundreds and, in most cases, to thousands of digits beyond the
precision required to discover them. Note, for example, in the last row of Table 3, that the full precision
level was 140,000 digits and the detection level was 2.00 × 10−118003. This means that the recovered
minimal polynomial relation holds to roughly 22,000 digits beyond the level of precision required to
discover it. Wolfram Mathematica 14.3 confirmed that each of these polynomials is irreducible.

The principal experimental findings of this study are the following:

1. A generalized Kimberley rule. Given (x, y) = (p/s, q/s), with 1 ≤ p ≤ q < s/2 and gcd(p, q, s) =
1, let φ2(x, y) be defined as in (1), with α = exp(−8πsψ2(x, y)). Then the degree of the minimal
polynomial of α is given by this rule:

1. If s is even or odd, and p = q, then the degree is given by Kimberley’s rule (3).

2. Otherwise if s is odd, then the degree is given by Kimberley’s rule, except for a few cases where
the degree is half Kimberley’s rule.
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Detection Largest CPU
s p q m P1 P2 level coefficient time

10 1 4 8 200 1000 7.25e -50 1.13e 45 0.04
11 2 2 30 600 3000 3.01e -2301 2.83e 76 5.45
12 4 5 16 400 2000 9.04e -555 6.13e 71 0.35
13 2 2 36 800 5000 1.51e -3874 4.93e 256 17.67
14 2 3 24 600 4000 5.13e -1392 1.16e 107 2.94
15 2 2 32 1000 6000 2.46e -3640 2.78e 113 14.90
16 2 3 32 800 4000 2.10e -2854 6.58e 88 8.94
17 3 3 64 2500 20000 2.20e -15969 3.91e 286 911.91
18 2 5 36 800 5000 3.62e -4281 6.99e 237 18.93
19 3 3 90 4000 40000 3.70e -35399 1.36e 392 8426.15
20 3 4 32 1000 5000 2.94e -3757 1.93e 283 11.23
21 4 4 96 5000 50000 1.35e -44538 3.36e 462 24148.22
22 1 6 60 2000 18000 4.46e -13901 6.88e 230 863.87
23 6 6 132 10000 100000 2.44e -92118 4.59e 695 293444.22
24 2 5 64 3000 22000 3.68e -17273 4.82e 504 1572.62
25 4 4 100 7500 75000 3.78e -57355 1.12e 572 52476.92
26 4 5 72 4000 35000 1.24e -23557 2.26e 711 4117.15
28 1 8 96 5000 50000 1.31e -46099 2.21e 666 24986.04
30 2 9 64 4000 30000 5.50e -22683 8.55e 477 2669.25
32 2 9 128 10000 100000 2.78e -92006 6.44e 716 266489.97
34 4 15 128 11000 110000 1.34e -98262 4.33e 765 335228.14
36 4 13 144 15000 150000 5.33e-132837 3.36e 920 1014451.90
40 1 4 128 16000 140000 2.00e-118003 1.20e 919 414242.84

Table 3: Run statistics for a brief sample of runs from the catalogue. Columns:
s, p, q: Identify the case (x, y) = (p/s, q/s).
m: Degree of the discovered minimal polynomial.
P1 and P2: Medium and full precision levels employed for the run in decimal digits.
Detection level: Size of maxi |wi| at detection; in each case, mini |wi| ≈ 10−P2 .
Largest coefficient: Approx. size of the largest coefficient in the resulting minimal polynomial.
CPU time: Total run time in processor core seconds (shown for uniformity to two decimal places,

but not repeatable beyond about three significant digits).
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3. If s is even, and both p and q are odd, then the degree is given by Kimberley’s rule, except for a
few cases where the degree is half Kimberley’s rule.

4. If s is even, with one of p or q even and the other odd, then the degree is given by twice Kimberley’s
rule, except for a few cases where the degree is equal to Kimberley’s rule.

2. Sharing of minimal polynomials. One particularly intriguing feature of the catalogue of results
(a feature also of the φ2(x, y) results) is that for a given integer s, many of the minimal polynomials
corresponding to various (x, y) = (p/s, q/s) cases are identical, even though the α numerical values
are distinct. Tables 4 through 7 below present a complete summary of these data extracted from the
computer runs: for a given s, each row lists (p, q) cases, corresponding to (x, y) = (p/s, q/s), whose
minimal polynomials are identical.

In examining these data, one striking regularity is observed: For a given s, all the cases (x, y) =
(p/s, p/s), where 1 ≤ p < s/2 and gcd(p, s) = 1, share the same minimal polynomial. For example,
for s = 36, the minimal polynomials for the cases (1, 1), (5, 5), (7, 7), (11, 11), (13, 13), (17, 17) are all
identical. Note that this represents a complete set of (p/36, p/36) with 1 ≤ p < 18 and gcd(p, 36) = 1.

This sharing feature of φ2(x, y), like that of ψ2(x, y), has not been observed before in studies of Poisson
polynomials, and the simplicity of this assertion suggests that it might well be amenable to further
theoretical analysis. Doubtless other regularities exist in this large set of data, as yet unrecognized. The
reader is invited to search these tables for additional interesting regularities.

It should be emphasized again, however, that these findings are experimental and tentative; the
present author has not been able to find formal proofs. But the relative simplicity of these assertions
suggests that they may well be amenable to proof or disproof.

8 Conclusions and future research

While these computational results and observations are a useful start, it is clear that a fuller understand-
ing of the structure and behavior of Poisson polynomials will require additional effort. In particular,
recall that the catalogued computations merely cover the cases (x, y) = (p/s, q/s), where 1 ≤ p, q < s/2,
with gcd(p, q, s) = 1, for 10 ≤ s ≤ 25 and also for s = 26, 28, 30, 32, 34, 36 and 40. To obtain further
confidence in the three assertions mentioned in the previous section, these limits should be increased,
which will require substantial additional computation. In addition, several questions still remain, such
as what regularity is exhibited by the exceptional cases, and, even more intriguingly, why certain sets of
cases share the same minimal polynomial, as noted in Tables 4 through 7.

Note also that all of the research results and analyses to date are for the simple two-dimensional
cases, namely φ2(x, y) and ψ2(x, y). The study [5] included brief mention of three and higher dimensions,
but at present this research is hampered by the lack of rapid and universally applicable computational
algorithms for higher dimensions, analogous to those listed above for φ2(x, y) and ψ2(x, y) in Section 2.
Clearly one important next step in this research is to re-examine earlier studies and elsewhere for hints
to computational techniques and theoretical results applicable to higher dimensions.

The arbitrary precision package employed in this study [2] is thread-safe, and the multi-pair PSLQ
algorithm exhibits moderate parallelism for large problems. Speedups of 12X on a 16-core system have
been achieved. But the question remains whether some other algorithm is more effective for these
very large problems and precision levels, and further is amenable to highly parallel processing. Note
that simply converting a straightforward full-precision implementation of an algorithm such as multipair
PSLQ for parallel processing, which may achieve large parallel speedups, is not helpful, since performance
timings in parallel computing must be compared to the most efficient practical serial algorithm (which
in this case is an algorithm, such as the three-level multipair PSLQ algorithm, that performs nearly all
iterations in double precision); otherwise parallel speedups are illusory.
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9 Appendix: PSLQ and multi-pair PSLQ

Given an input vector x = (xj , 1 ≤ j ≤ n) of real numbers, typically given as high-precision floating-point
values, the PSLQ and multipair PSLQ integer relation algorithms attempt to find a nontrivial vector of
integers (aj), if one exists, such that

a1x1 + a2x2 + · · ·+ anxn = 0, (17)

to within the numeric precision being employed. The name “PSLQ” derives from its usage of a partial
sum of squares vector and an LQ (lower-diagonal-orthogonal) matrix factorization.

The multipair PSLQ algorithm attempts to perform multiple iterations of the standard PSLQ algo-
rithm in a single iteration. It is moderately parallelizable and has the added benefit of running faster,
even on a single processor, and of being even more efficient with precision: in most cases it can detect
a relation when the numeric precision is only a few percent higher than a minimum bound [7]. More
complete details on these algorithms, including details on multilevel precision implementations, are given
in [7] and [3].

9.1 The standard PSLQ algorithm

Let x be the n-long input real vector, let nint denote the nearest integer function (for exact half-integer
values, define nint to be the integer with greater absolute value) and select γ ≥

√
4/3 (we typically select

γ =
√

4/3, since this is the most efficient with precision).

Initialize:

1. For j := 1 to n: for i := 1 to n: if i = j then set Aij := 1 and Bij := 1 else set Aij := 0 and
Bij := 0; endfor; endfor.

2. For k := 1 to n: set sk :=
√∑n

j=k x
2
j ; endfor. Set t = 1/s1. For k := 1 to n: set yk := txk; sk :=

tsk; endfor.

3. Initial H: For j := 1 to n − 1: for i := 1 to j − 1: set Hij := 0; endfor; set Hjj := sj+1/sj ; for
i := j + 1 to n: set Hij := −yiyj/(sjsj+1); endfor; endfor.

4. Reduce H: For i := 2 to n: for j := i− 1 to 1 step −1: set t := nint(Hij/Hjj); and yj := yj + tyi;
for k := 1 to j: set Hik := Hik − tHjk; endfor; for k := 1 to n: set Aik := Aik − tAjk and
Bkj := Bkj + tBki; endfor; endfor; endfor.

Iteration: Repeat the following steps until precision has been exhausted or a relation has been detected.

1. Select m such that γi|Hii| is maximal when i = m.

2. Exchange the entries of y indexed m and m + 1, the corresponding rows of A and H, and the
corresponding columns of B.

3. Remove corner on H diagonal: If m ≤ n − 2 then set t0 :=
√
H2
mm +H2

m,m+1, t1 := Hmm/t0

and t2 := Hm,m+1/t0; for i := m to n: set t3 := Him, t4 := Hi,m+1, Him := t1t3 + t2t4 and
Hi,m+1 := −t2t3 + t1t4; endfor; endif.

4. Reduce H: For i := m+ 1 to n: for j := min(i− 1,m+ 1) to 1 step −1: set t := nint(Hij/Hjj) and
yj := yj + tyi; for k := 1 to j: set Hik := Hik− tHjk; endfor; for k := 1 to n: set Aik := Aik− tAjk
and Bkj := Bkj + tBki; endfor; endfor; endfor.

5. Norm bound: Compute M := 1/maxj |Hjj |. Then there can exist no relation vector whose Eu-
clidean norm is less than M .
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6. Termination test: If the largest entry of A or B exceeds the level of numeric precision used, then
precision is exhausted. If the smallest entry of the y vector is less than the detection threshold,
and the dynamic range between that smallest entry and the largest entry of y is sufficiently large
(say at least 30 orders of magnitude), then a relation may have been detected and is given in the
corresponding row of B.

9.2 The multipair PSLQ algorithm

Let x be the n-long input real vector, let nint denote the nearest integer function as before and select
γ ≥

√
4/3 (we typically select γ =

√
4/3, since this is the most efficient with precision) and β = 0.4.

Initialize:

1. For j := 1 to n: for i := 1 to n: if i = j then set Aij := 1 and Bij := 1 else set Aij := 0 and
Bij := 0; endfor; endfor.

2. For k := 1 to n: set sk :=
√∑n

j=k x
2
j ; endfor; set t = 1/s1; for k := 1 to n: set yk := txk; sk := tsk;

endfor.

3. Initial H: For j := 1 to n − 1: for i := 1 to j − 1: set Hij := 0; endfor; set Hjj := sj+1/sj ; for
i := j + 1 to n: set Hij := −yiyj/(sjsj+1); endfor; endfor.

Iteration: Repeat the following steps until precision has been exhausted or a relation has been detected.

1. Sort the entries of the (n− 1)-long vector {γi|Hii|} in decreasing order, producing the sort indices.

2. Beginning at the sort index m1 corresponding to the largest γi|Hii|, select pairs of indices (mi,mi+
1), where mi is the sort index. If at any step either mi or mi + 1 has already been selected or is
outside the array bound, pass to the next index in the list. Continue until either βn pairs have
been selected, or the list is exhausted. Let p denote the number of pairs actually selected in this
manner.

3. For i := 1 to p, exchange the entries of y indexed mi and mi + 1, and the corresponding rows of A,
B and H; endfor.

4. Remove corners on H diagonal: For i := 1 to p: if mi ≤ n−2 then set t0 :=
√
H2
mi,mi +H2

mi,mi+1,

t1 := Hmi,mi/t0 and t2 := Hmi,mi+1/t0; for i := mi to n: set t3 := Hi,mi ; t4 := Hi,mi+1;
Hi,mi := t1t3 + t2t4; and Hi,mi+1 := −t2t3 + t1t4; endfor; endif; endfor.

5. Reduce H: For i := 2 to n: for j := 1 to n − i + 1: set l := i + j − 1; for k := j + 1 to l − 1: set
Hlj := Hlj − TlkHkj ; endfor; set Tlj := nint(Hlj/Hjj) and Hlj := Hlj − TljHjj ; endfor; endfor.

6. Update y: For j := 1 to n− 1: for i := j + 1 to n: set yj := yj + Tijyi; endfor; endfor.

7. Update A and B: For k := 1 to n: for j := 1 to n− 1: for i := j + 1 to n: set Aik := Aik − TijAjk
and Bjk := Bjk + TijBik; endfor; endfor; endfor.

8. Norm bound: Compute M := 1/maxj |Hjj |. Then there can exist no relation vector whose Eu-
clidean norm is less than M .

9. Termination test: If the largest entry of A or B exceeds the level of numeric precision used, then
precision is exhausted. If the smallest entry of the y vector is less than the detection threshold,
and the dynamic range between that smallest entry and the largest entry of y is sufficiently large
(say at least 30 orders of magnitude), then a relation may have been detected and is given in the
corresponding row of B.

13



s = 10 ( 1, 1), ( 3, 3)
( 1, 2), ( 3, 4)
( 1, 4), ( 2, 3)
( 1, 3)

s = 11 ( 1, 2), ( 1, 5), ( 2, 4), ( 3, 4), ( 3, 5)
( 1, 1), ( 2, 2), ( 3, 3), ( 4, 4), ( 5, 5)
( 1, 3), ( 1, 4), ( 2, 3), ( 2, 5), ( 4, 5)

s = 12 ( 1, 2), ( 1, 4), ( 2, 5), ( 4, 5)
( 1, 5)
( 2, 3), ( 3, 4)
( 1, 3), ( 3, 5)
( 1, 1), ( 5, 5)

s = 13 ( 1, 2), ( 1, 6), ( 2, 4), ( 3, 5), ( 3, 6), ( 4, 5)
( 1, 1), ( 2, 2), ( 3, 3), ( 4, 4), ( 5, 5), ( 6, 6)
( 1, 5), ( 2, 3), ( 4, 6)
( 1, 3), ( 1, 4), ( 2, 5), ( 2, 6), ( 3, 4), ( 5, 6)

s = 14 ( 1, 6), ( 2, 5), ( 3, 4)
( 1, 2), ( 1, 4), ( 2, 3), ( 3, 6), ( 4, 5), ( 5, 6)
( 1, 3), ( 1, 5), ( 3, 5)
( 1, 1), ( 3, 3), ( 5, 5)

s = 15 ( 1, 4), ( 2, 7)
( 1, 2), ( 1, 7), ( 2, 4), ( 4, 7)
( 1, 6), ( 2, 3), ( 3, 7), ( 4, 6)
( 1, 1), ( 2, 2), ( 4, 4), ( 7, 7)
( 3, 5), ( 5, 6)
( 1, 3), ( 2, 6), ( 3, 4), ( 6, 7)
( 1, 5), ( 2, 5), ( 4, 5), ( 5, 7)

s = 16 ( 1, 1), ( 3, 3), ( 5, 5), ( 7, 7)
( 1, 7), ( 3, 5)
( 1, 4), ( 3, 4), ( 4, 5), ( 4, 7)
( 1, 2), ( 1, 6), ( 2, 3), ( 2, 5), ( 2, 7), ( 3, 6), ( 5, 6), ( 6, 7)
( 1, 3), ( 1, 5), ( 3, 7), ( 5, 7)

s = 17 ( 1, 2), ( 1, 8), ( 2, 4), ( 3, 6), ( 3, 7), ( 4, 8), ( 5, 6), ( 5, 7)
( 1, 5), ( 1, 7), ( 2, 3), ( 2, 7), ( 3, 4), ( 4, 6), ( 5, 8), ( 6, 8)
( 1, 1), ( 2, 2), ( 3, 3), ( 4, 4), ( 5, 5), ( 6, 6), ( 7, 7), ( 8, 8)
( 1, 4), ( 2, 8), ( 3, 5), ( 6, 7)
( 1, 3), ( 1, 6), ( 2, 5), ( 2, 6), ( 3, 8), ( 4, 5), ( 4, 7), ( 7, 8)

s = 18 ( 1, 3), ( 1, 5), ( 1, 7), ( 3, 5), ( 3, 7), ( 5, 7)
( 1, 2), ( 1, 4), ( 2, 5), ( 4, 7), ( 5, 8), ( 7, 8)
( 1, 1), ( 5, 5), ( 7, 7)
( 1, 8), ( 2, 7), ( 4, 5)
( 1, 6), ( 2, 3), ( 3, 4), ( 3, 8), ( 5, 6), ( 6, 7)

s = 19 ( 1, 2), ( 1, 9), ( 2, 4), ( 3, 6), ( 3, 8), ( 4, 8), ( 5, 7), ( 5, 9), ( 6, 7)
( 1, 7), ( 1, 8), ( 2, 3), ( 2, 5), ( 3, 5), ( 4, 6), ( 4, 9), ( 6, 9), ( 7, 8)
( 1, 3), ( 1, 6), ( 2, 6), ( 2, 7), ( 3, 9), ( 4, 5), ( 4, 7), ( 5, 8), ( 8, 9)
( 1, 4), ( 1, 5), ( 2, 8), ( 2, 9), ( 3, 4), ( 3, 7), ( 5, 6), ( 6, 8), ( 7, 9)
( 1, 1), ( 2, 2), ( 3, 3), ( 4, 4), ( 5, 5), ( 6, 6), ( 7, 7), ( 8, 8), ( 9, 9)

Table 4: Each row gives cases (p/s, q/s) that share the same minimal polynomial; 10 ≤ s ≤ 19
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s = 20 ( 1, 5), ( 3, 5), ( 5, 7), ( 5, 9)
( 1, 4), ( 1, 6), ( 2, 3), ( 2, 7), ( 3, 8), ( 4, 9), ( 6, 9), ( 7, 8)
( 1, 2), ( 1, 8), ( 2, 9), ( 3, 4), ( 3, 6), ( 4, 7), ( 6, 7), ( 8, 9)
( 2, 5), ( 4, 5), ( 5, 6), ( 5, 8)
( 1, 3), ( 1, 7), ( 3, 9), ( 7, 9)
( 1, 9), ( 3, 7)
( 1, 1), ( 3, 3), ( 7, 7), ( 9, 9)

s = 21 ( 1, 6), ( 2, 9), ( 3, 4), ( 3,10), ( 5, 9), ( 6, 8)
( 1, 2), ( 1,10), ( 2, 4), ( 4, 8), ( 5, 8), ( 5,10)
( 1, 9), ( 2, 3), ( 3, 5), ( 4, 6), ( 6,10), ( 8, 9)
( 1, 8), ( 2, 5), ( 4,10)
( 1, 1), ( 2, 2), ( 4, 4), ( 5, 5), ( 8, 8), (10,10)
( 1, 7), ( 2, 7), ( 4, 7), ( 5, 7), ( 7, 8), ( 7,10)
( 1, 3), ( 2, 6), ( 3, 8), ( 4, 9), ( 5, 6), ( 9,10)
( 1, 4), ( 1, 5), ( 2, 8), ( 2,10), ( 4, 5), ( 8,10)
( 3, 7), ( 6, 7), ( 7, 9)

s = 22 ( 1, 2), ( 1, 6), ( 2, 7), ( 3, 4), ( 3, 6), ( 4, 9), ( 5, 8), ( 5,10), ( 7, 8), ( 9,10)
( 1,10), ( 2, 9), ( 3, 8), ( 4, 7), ( 5, 6)
( 1, 3), ( 1, 5), ( 1, 7), ( 1, 9), ( 3, 5), ( 3, 7), ( 3, 9), ( 5, 7), ( 5, 9), ( 7, 9)
( 1, 4), ( 1, 8), ( 2, 3), ( 2, 5), ( 3,10), ( 4, 5), ( 6, 7), ( 6, 9), ( 7,10), ( 8, 9)
( 1, 1), ( 3, 3), ( 5, 5), ( 7, 7), ( 9, 9)

s = 23 ( 1, 2), ( 1,11), ( 2, 4), ( 3, 6), ( 3,10), ( 4, 8), ( 5, 9), ( 5,10), ( 6,11), ( 7, 8), ( 7, 9)
( 1, 7), ( 1,10), ( 2, 3), ( 2, 9), ( 3, 7), ( 4, 5), ( 4, 6), ( 5,11), ( 6, 9), ( 8,10), ( 8,11)
( 1, 1), ( 2, 2), ( 3, 3), ( 4, 4), ( 5, 5), ( 6, 6), ( 7, 7), ( 8, 8), ( 9, 9), (10,10), (11,11)
( 1, 3), ( 1, 8), ( 2, 6), ( 2, 7), ( 3, 9), ( 4, 9), ( 4,11), ( 5, 6), ( 5, 8), ( 7,10), (10,11)
( 1, 4), ( 1, 6), ( 2, 8), ( 2,11), ( 3, 5), ( 3,11), ( 4, 7), ( 5, 7), ( 6,10), ( 8, 9), ( 9,10)
( 1, 5), ( 1, 9), ( 2, 5), ( 2,10), ( 3, 4), ( 3, 8), ( 4,10), ( 6, 7), ( 6, 8), ( 7,11), ( 9,11)

s = 24 ( 1, 7), ( 5,11)
( 1,11), ( 5, 7)
( 1, 9), ( 3, 5), ( 3,11), ( 7, 9)
( 3, 4), ( 3, 8), ( 4, 9), ( 8, 9)
( 1, 1), ( 5, 5), ( 7, 7), (11,11)
( 1, 3), ( 3, 7), ( 5, 9), ( 9,11)
( 1, 4), ( 1, 8), ( 4, 5), ( 4, 7), ( 4,11), ( 5, 8), ( 7, 8), ( 8,11)
( 1, 6), ( 5, 6), ( 6, 7), ( 6,11)
( 1, 5), ( 7,11)
( 1, 2), ( 1,10), ( 2, 5), ( 2, 7), ( 2,11), ( 5,10), ( 7,10), (10,11)
( 2, 3), ( 2, 9), ( 3,10), ( 9,10)

s = 25 ( 1, 4), ( 1, 6), ( 2, 8), ( 2,12), ( 3, 7), ( 3,12), ( 4, 9), ( 6,11), ( 7, 8), ( 9,11)
( 1, 9), ( 2, 3), ( 2, 7), ( 3, 8), ( 4, 6), ( 4,11), ( 6, 9), ( 7,12), ( 8,12)
( 1, 2), ( 1,12), ( 2, 4), ( 3, 6), ( 3,11), ( 4, 8), ( 6,12), ( 7, 9), ( 7,11), ( 8, 9)
( 1,10), ( 2, 5), ( 3, 5), ( 4,10), ( 5, 7), ( 5, 8), ( 5,12), ( 6,10), ( 9,10), (10,11)
( 1, 1), ( 2, 2), ( 3, 3), ( 4, 4), ( 6, 6), ( 7, 7), ( 8, 8), ( 9, 9), (11,11), (12,12)
( 1, 5), ( 2,10), ( 3,10), ( 4, 5), ( 5, 6), ( 5, 9), ( 5,11), ( 7,10), ( 8,10)
( 1, 7), ( 2,11), ( 3, 4), ( 6, 8)
( 1, 3), ( 1, 8), ( 2, 6), ( 2, 9), ( 3, 9), ( 4, 7), ( 4,12), ( 6, 7), ( 8,11), (11,12)

Table 5: Each row gives cases (p/s, q/s) that share the same minimal polynomial; 20 ≤ s ≤ 25
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s = 26 ( 1, 4), ( 1,10), ( 2, 5), ( 2, 7), ( 3, 4), ( 3,12), ( 5, 6), ( 6,11), ( 7, 8), ( 8,11), ( 9,10), ( 9,12)
( 1, 2), ( 1, 6), ( 2, 9), ( 3, 6), ( 3, 8), ( 4, 5), ( 4,11), ( 5,10), ( 7,10), ( 7,12), ( 8, 9), (11,12)
( 1, 8), ( 2, 3), ( 4, 7), ( 5,12), ( 6, 9), (10,11)
( 1, 5), ( 3,11), ( 7, 9)
( 1, 1), ( 3, 3), ( 5, 5), ( 7, 7), ( 9, 9), (11,11)
( 1, 3), ( 1, 7), ( 1, 9), ( 1,11), ( 3, 5), ( 3, 7), ( 3, 9), ( 5, 7), ( 5, 9), ( 5,11), ( 7,11), ( 9,11)
( 1,12), ( 2,11), ( 3,10), ( 4, 9), ( 5, 8), ( 6, 7)

s = 28 ( 2, 7), ( 4, 7), ( 6, 7), ( 7, 8), ( 7,10), ( 7,12)
( 1,13), ( 3,11), ( 5, 9)
( 1, 2), ( 1,12), ( 2,13), ( 3, 6), ( 3, 8), ( 4, 5), ( 4, 9), ( 5,10), ( 6,11), ( 8,11), ( 9,10), (12,13)
( 1, 6), ( 1, 8), ( 2, 5), ( 2, 9), ( 3, 4), ( 3,10), ( 4,11), ( 5,12), ( 6,13), ( 8,13), ( 9,12), (10,11)
( 1, 5), ( 1,11), ( 3, 5), ( 3,13), ( 9,11), ( 9,13)
( 1, 7), ( 3, 7), ( 5, 7), ( 7, 9), ( 7,11), ( 7,13)
( 1, 4), ( 1,10), ( 2, 3), ( 2,11), ( 3,12), ( 4,13), ( 5, 6), ( 5, 8), ( 6, 9), ( 8, 9), (10,13), (11,12)
( 1, 1), ( 3, 3), ( 5, 5), ( 9, 9), (11,11), (13,13)
( 1, 3), ( 1, 9), ( 3, 9), ( 5,11), ( 5,13), (11,13)

s = 30 ( 1,14), ( 2,13), ( 4,11), ( 7, 8)
( 1, 3), ( 1, 7), ( 1,13), ( 3,11), ( 7, 9), ( 7,11), ( 9,13), (11,13)
( 3,10), ( 5, 6), ( 5,12), ( 9,10)
( 1,10), ( 2, 5), ( 4, 5), ( 5, 8), ( 5,14), ( 7,10), (10,11), (10,13)
( 1,11), ( 3, 5), ( 5, 9), ( 7,13)
( 1, 4), ( 2, 7), ( 8,13), (11,14)
( 1, 2), ( 1, 8), ( 2,11), ( 4, 7), ( 4,13), ( 7,14), ( 8,11), (13,14)
( 1, 6), ( 2, 3), ( 3, 8), ( 4, 9), ( 6,11), ( 7,12), ( 9,14), (12,13)
( 1, 1), ( 7, 7), (11,11), (13,13)
( 1, 5), ( 1, 9), ( 3, 7), ( 3,13), ( 5, 7), ( 5,11), ( 5,13), ( 9,11)
( 1,12), ( 2, 9), ( 3, 4), ( 3,14), ( 6, 7), ( 6,13), ( 8, 9), (11,12)

s = 32 ( 1, 6), ( 1,10), ( 2, 3), ( 2, 5), ( 2,11), ( 2,13), ( 3,14), ( 5,14), ( 6, 7), ( 6, 9), ( 6,15), ( 7,10),
( 9,10), (10,15), (11,14), (13,14)

( 1, 5), ( 1,13), ( 3, 7), ( 3,15), ( 5, 7), ( 9,11), ( 9,13), (11,15)
( 1, 1), ( 3, 3), ( 5, 5), ( 7, 7), ( 9, 9), (11,11), (13,13), (15,15)
( 1, 7), ( 1, 9), ( 3, 5), ( 3,11), ( 5,13), ( 7,15), ( 9,15), (11,13)
( 1, 3), ( 1,11), ( 3, 9), ( 5, 9), ( 5,15), ( 7,11), ( 7,13), (13,15)
( 1, 8), ( 3, 8), ( 5, 8), ( 7, 8), ( 8, 9), ( 8,11), ( 8,13), ( 8,15)
( 1,15), ( 3,13), ( 5,11), ( 7, 9)
( 1, 2), ( 1,14), ( 2, 7), ( 2, 9), ( 2,15), ( 3, 6), ( 3,10), ( 5, 6), ( 5,10), ( 6,11), ( 6,13), ( 7,14),

( 9,14), (10,11), (10,13), (14,15)
( 1, 4), ( 1,12), ( 3, 4), ( 3,12), ( 4, 5), ( 4, 7), ( 4, 9), ( 4,11), ( 4,13), ( 4,15), ( 5,12), ( 7,12),

( 9,12), (11,12), (12,13), (12,15)

Table 6: Each row gives cases (p/s, q/s) that share the same minimal polynomial; 26 ≤ s ≤ 32
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s = 34 ( 1, 2), ( 1, 8), ( 2,13), ( 3, 6), ( 3,10), ( 4, 9), ( 4,15), ( 5, 6), ( 5,10), ( 7,12), ( 7,14), ( 8,13),
( 9,16), (11,12), (11,14), (15,16)

( 1, 5), ( 1, 7), ( 3,13), ( 3,15), ( 5, 9), ( 7,15), ( 9,11), (11,13)
( 1, 4), ( 2, 9), ( 3,12), ( 5,14), ( 6, 7), ( 8,15), (10,11), (13,16)
( 1, 1), ( 3, 3), ( 5, 5), ( 7, 7), ( 9, 9), (11,11), (13,13), (15,15)
( 1, 6), ( 1,14), ( 2, 5), ( 2,11), ( 3, 8), ( 3,16), ( 4, 5), ( 4, 7), ( 6,15), ( 7, 8), ( 9,10), ( 9,14),

(10,13), (11,16), (12,13), (12,15)
( 1,10), ( 1,12), ( 2, 3), ( 2, 7), ( 3, 4), ( 4,11), ( 5, 8), ( 5,16), ( 6, 9), ( 6,13), ( 7,16), ( 8,11),

( 9,12), (10,15), (13,14), (14,15)
( 1,13), ( 3, 5), ( 7,11), ( 9,15)
( 1,16), ( 2,15), ( 3,14), ( 4,13), ( 5,12), ( 6,11), ( 7,10), ( 8, 9)
( 1, 3), ( 1, 9), ( 1,11), ( 1,15), ( 3, 7), ( 3, 9), ( 3,11), ( 5, 7), ( 5,11), ( 5,13), ( 5,15), ( 7, 9),

( 7,13), ( 9,13), (11,15), (13,15)
s = 36 ( 1, 6), ( 1,12), ( 5, 6), ( 5,12), ( 6, 7), ( 6,11), ( 6,13), ( 6,17), ( 7,12), (11,12), (12,13), (12,17)

( 1,15), ( 3, 5), ( 3, 7), ( 3,17), (11,15), (13,15)
( 1, 2), ( 1,16), ( 2,17), ( 4, 7), ( 4,11), ( 5, 8), ( 5,10), ( 7,14), ( 8,13), (10,13), (11,14), (16,17)
( 1, 9), ( 5, 9), ( 7, 9), ( 9,11), ( 9,13), ( 9,17)
( 1, 4), ( 1,14), ( 2, 5), ( 2,13), ( 4,17), ( 5,16), ( 7, 8), ( 7,10), ( 8,11), (10,11), (13,16), (14,17)
( 1, 8), ( 1,10), ( 2, 7), ( 2,11), ( 4, 5), ( 4,13), ( 5,14), ( 7,16), ( 8,17), (10,17), (11,16), (13,14)
( 1, 1), ( 5, 5), ( 7, 7), (11,11), (13,13), (17,17)
( 2, 3), ( 2,15), ( 3, 4), ( 3, 8), ( 3,10), ( 3,14), ( 3,16), ( 4,15), ( 8,15), (10,15), (14,15), (15,16)
( 1, 5), ( 1, 7), ( 5,11), ( 7,13), (11,17), (13,17)
( 1,17), ( 5,13), ( 7,11)
( 2, 9), ( 4, 9), ( 8, 9), ( 9,10), ( 9,14), ( 9,16)
( 1,11), ( 1,13), ( 5, 7), ( 5,17), ( 7,17), (11,13)
( 1, 3), ( 3,11), ( 3,13), ( 5,15), ( 7,15), (15,17)

s = 40 ( 1, 1), ( 3, 3), ( 7, 7), ( 9, 9), (11,11), (13,13), (17,17), (19,19)
( 1,15), ( 3, 5), ( 5,11), ( 5,19), ( 7,15), ( 9,15), (15,17)
( 2, 5), ( 2,15), ( 5, 6), ( 5,14), ( 5,18), (14,15), (15,18)
( 1,10), ( 3,10), ( 7,10), ( 9,10), (10,11), (10,13), (10,17), (10,19)
( 1, 7), ( 1,17), ( 3,11), ( 3,19), ( 7, 9), ( 9,17), (11,13), (13,19)
( 1, 6), ( 1,14), ( 2, 3), ( 2, 7), ( 2,13), ( 2,17), ( 3,18), ( 6,11), ( 6,19), ( 7,18), ( 9,14), (11,14),

(13,18), (14,19), (17,18)
( 1,11), ( 3, 7), ( 9,19), (13,17)
( 1, 5), ( 3,15), ( 5, 7), ( 5, 9), ( 5,17), (11,15), (13,15), (15,19)
( 1, 8), ( 1,12), ( 3, 4), ( 3,16), ( 4, 7), ( 4,13), ( 4,17), ( 7,16), ( 8, 9), ( 8,11), ( 8,19), ( 9,12),

(11,12), (12,19), (13,16), (16,17)
( 1, 3), ( 1,13), ( 3, 9), ( 7,19), (11,17), (17,19)
( 1, 9), ( 3,13), ( 7,17), (11,19)
( 1, 2), ( 1,18), ( 2, 9), ( 2,11), ( 2,19), ( 3, 6), ( 3,14), ( 6, 7), ( 6,13), ( 6,17), ( 7,14), ( 9,18),

(11,18), (13,14), (14,17), (18,19)
( 4, 5), ( 4,15), ( 5, 8), ( 5,12), ( 5,16), ( 8,15), (12,15), (15,16)
( 1, 4), ( 1,16), ( 3, 8), ( 3,12), ( 4, 9), ( 4,11), ( 4,19), ( 7, 8), ( 7,12), ( 8,13), ( 8,17), ( 9,16),

(11,16), (12,13), (12,17), (16,19)
( 1,19), ( 3,17), ( 7,13), ( 9,11)

Table 7: Each row gives cases (p/s, q/s) that share the same minimal polynomial; 34 ≤ s ≤ 40
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