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Abstract
Earlier studies have explored the intriguing phenomenon of algebraic numbers arising from a
simple two-dimensional instance of the Poisson potential function of mathematical physics:
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In this paper, we address the closely related function (even indices instead of odd, excluding (0,0)):
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As with ¢2(z,y), it is known from an earlier study that when x and y are rational numbers, then
Ya(z,y) = 1/7 - log(B(x,y)), where S(x,y) is an algebraic number of some degree m.

In this paper we present formulas and techniques for rapid numerical computation of ¥2(z,y),
corrected from an earlier study, together with an initial catalogue of the minimal polynomials satisfied
by o = exp(8msy2(z,y)). These computations, which are much more challenging than with ¢2(x,y),
cover the cases (z,y) = (p/s,q/s), where 1 < p < ¢ < s/2 and ged(p,¢,s) = 1, for 10 < s < 25
and also for s = 26, 28, 30, 32, 34, 36, 40, a total of 1,017 cases. With this catalogue of computational
results in hand, we note several intriguing regularities, including (tentatively): (a) a variant of
Kimberley’s formula that gives the degrees of the minimal polynomials; and (b) the fact that for
a given s, all the cases (z,y) = (p/s,p/s), with 1 < p < s/2 and gcd(p,s) = 1, share the same
minimal polynomial. These polynomials typically do not exhibit the palindromic property observed
for ¢2(p/s,q/s) when s is even.

1 Earlier work on Poisson polynomials

Lattice sums related to the Poisson potential function naturally arise in studies of gravitational and
electrostatic potentials, and have been studied in the mathematical physics community for many years
[1, @ M3, M4, 18]. Lord Rayleigh, in his 1892 paper, mentions Lorenz as the inventor of the concept
[16]. More recently, researchers have identified applications in practical image processing [B]. These
developments have underscored the need to better understand the underlying mathematical theory.

In two earlier papers [5] [6], Jonathan Borwein (deceased 2016), Richard Crandall (deceased 2012)
and I. J. Zucker analyzed a simple two-dimensional instance of the Poisson potential function:
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These researchers empirically discovered and then proved the intriguing fact that when x and y are
rational numbers, then
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where B(z,y) is an algebraic number, namely the root of a degree-m minimal polynomial with integer
coefficients, for some m.

This result can be explored computationally as follows: Given rationals x, y and an integer m, compute
a = exp(8m¢a(x,y)) to high precision, generate the (m+1)-long vector (1,a, a?,--- ,a™), and then apply
an integer relation algorithm to discover the coefficients of the polynomial of degree m, if it exists, satisfied
by «. It is not practical to numerically evaluate ¢2(x,y) by the defining formula , but Borwein and
Crandall discovered rapidly computable formulas for ¢2(z,y) in terms of theta functions [5].

Based on some initial computational results, Jason Kimberley of the University of Newcastle, Aus-
tralia observed that the degree m(s) of the minimal polynomial associated with the special case (z,y) =
(1/s,1/s) appears to be given by the following number-theoretic rule [6]: Set m(2) = 1/2. Otherwise for
primes p congruent to 1 modulo 4, set m(p) = (p — 1)?/4, and for primes p congruent to 3 modulo 4, set
m(p) = (p? — 1)/4. Then for any other positive integer s whose prime factorization is s = p{*p5? - - - p¢r,

m(s) =4 T o{ 7 m(e). 3)

Subsequent computations confirmed that Kimberley’s formula holds for (z,y) = (1/s,1/s) for all
integers s up to 40, and also for most even integers up to 64. By doing Google searches on the coefficients
of the resulting polynomials, the authors found a connection to a 2010 paper by Savin and Quarfoot [I7].
These investigations ultimately led to a proof, given in [6], that Kimberley’s formula is valid in the
special case (z,y) = (1/s,1/s), and, when s is even, the minimal polynomials for (z,y) = (1/s,1/s) are
palindromic (i.e., coeflicient ax, = a,,—, where m is the degree).

In [3, 4] these computations were extended to the much larger set of mixed arguments, namely
(z,y) = (p/s,q/s), where 1 < p < g < s/2 and ged(p,q,s) = 1, for 10 < s < 36 and also for s = 38,40, 42
and s = 50, a total of 2,206 cases. With this extensive catalogue of computational results in hand, we
were able to note (tentatively): (@) a variant of Kimberley’s formula that gives the degrees; (b) the fact
that for a given s, all the cases (x,y) = (p/s,p/s), with 1 < p < s/2 and ged(p, s) = 1, share the same
minimal polynomial; and (¢) the fact that whenever s is even, the minimal polynomials are palindromic.

2 The Poisson psi function

The 2013 study [5] also mentioned the closely related function
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which differs from ¢ (z,y) by replacing odd indices with even, excluding (m,n) = (0,0). The s(z,y)
function is the natural potential for a classical “jellium” crystal, namely a structure with a positive charge
at every integer lattice point, in a bath (a jelly) of uniform negative charge density [11]. As with ¢2(z,vy),
the authors of [5] were able to show that when x and y are rational, then ¥y (z,y) = 1/7 - log(8(z,y))
for some algebraic B(x,y).

It is not possible to numerically compute ¥s(x,y) by formula , since millions of terms are required
to obtain even a few correct digits. Thus a key breakthrough in this research was the discovery, due to
Borwein and Crandall, of formulas permitting fast computation of both ¢o(x,y) and ¥o(z,y) [5, Thm. 9]
(the formulas given for ¥y (z, y) in [5] are flawed, thus preventing computer exploration; they are corrected
below). These formulas, in turn, are based on the following two formulas (the second was incorrectly
presented in earlier literature, but was corrected in [5]):
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where ¢ = ™™, 2 = /2 (y +iz), A(2,q) = (03(2,9)03(2,q))/(03(2,9)03(2,q)), and the theta functions
are defined below. Based on these formulas, the authors of [5] derived the following equivalents, which
we present here in corrected form and with less ambiguous notation:
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The theta functions can be computed using the following rapidly convergent formulas from [8, pg. 52]:

(z,q) —22 g% -=v* Msin((2k —1)2),

0(z,q) = 22 gD cos((2k — 1)2),

k=1
03(z,q) =1+2 qu2 cos(2kz),
k=1
04(z,q) 71+22 * cos (2kz). (11)

The present author has implemented three varlatlons of these formulas, using both Mathematica and
a high-precision software package (a) formulas and @ ) formulas ( . 7)) through (L1)) with the first
parts of @ and ( ., and (c¢) formulas (7] through . w1th the second parts of @[) and . All three
agree on test problems, and run times are within a factor of two. Option (b) was employed below.

The study [5] included several explicit evaluations for 12(x,y), but one of these was in error. Here is
a corrected collection, with two additional results due to the present author:
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In this paper, we describe the computation of minimal polynomials for o = exp(8wsia(x,y)) (which,
as can be seen above, is a natural form for this study), for all (z,y) = (p/s,q/s), where 1 < p <
q < s/2, for 10 < s < 25, and also for s = 26,28, 30,32,34,36 and 40, a total of 1,017 cases. These
computations and analyses are significantly more challenging than with ¢o(z,y), requiring much higher
numeric precision (up to 150,000 digits) and much longer run times (typically 100X or more, compared
to equivalent ¢2(x,y) cases). See Table [3| below for some statistics.

Some high-level details of the algorithms and techniques employed in this study are given in Sections
through |§| below, parts of which are adapted and condensed from an earlier ¢o(z,y) study [].

3 Finding minimal polynomials using integer relation algorithms

Given an n-long input vector v = (v;,1 < ¢ < n) of real numbers, typically given as high-precision
floating-point values, an integer relation algorithm attempts to find integers (a;), not all zero, such that

a1v1 + a2 + -+ -+ apv, = 07 (13)

to within the tolerance of the numeric precision being used.

If one suspects that a high-precision floating-point value « is an algebraic number of degree m, one
may compute the (m +1)-long vector X = (1,,a?, -+, a™) to high precision and then apply an integer
relation algorithm. If an integer relation (a;) is found for X, then the resulting vector of integers may
be the coefficients of an integer polynomial of degree m satisfied by «, subject to further verification.

As an illustration, suppose one suspects that the real constant «, whose numerical value to 40
digits is 2.1195912698291751313298483349346871106280 . . ., is an algebraic number of degree eight. After
computing the vector (1,a,a?,---, a®), say to 100-digit precision, and applying the multipair PSLQ
integer relation algorithm (see next section), the relation (1, —216, 860, —744, 454, —744, 860, —216, 1) is
produced, so that a appears to satisfy the polynomial 1 — 216« + 86002 — 7443 + 454a* — 7440° +
8600 — 216" +a® = 0. Maple or Mathematica may then be used to verify that the resulting polynomial
is irreducible; alternatively, one may attempt to recover an integer relation with the degree reduced by
one, and verify that no numerically significant relation is produced with this smaller degree.

4 The three-level multipair PSLQ algorithm

The multipair PSLQ algorithm [7] is an efficient and moderately parallelizable variant of PSLQ, a widely
used integer relation algorithm. Variants of the LLL algorithm are also used [I0]. For convenience, full
statements of the PSLQ and multipair PSLQ algorithms are presented below in Section [0

In brief, given an n-long input vector v, the multipair PSLQ algorithm generates a sequence of
invertible n X n integer matrices Ay, their inverses By and real n X (n — 1) matrices Hy, so that the
reduced vector w = By, - v has steadily smaller entries, until one entry of w is smaller than the specified
epsilon (with the relation given in the corresponding row of By), or else precision is exhausted.

Integer relation detection by any algorithm requires very high numeric precision. It can be seen from
a combinatorial argument that one must employ at least n-max; log; |a;| digits, or else the true relation
will be lost in a sea of numerical artifacts. Multipair PSLQ can typically detect a relation when the
numeric precision is only a few percent higher than this minimum bound [7].

The computations in this study employed a three-level variable precision implementation of the
multipair PSLQ algorithm [7]: (@) double precision (15 digits); (b) medium precision (typically 500
to 10,000 digits); and (¢) full precision (typically 10,000 to 150,000 digits). With this scheme, almost all
iterations of the multipair PSLQ algorithm are performed very rapidly using ordinary double precision
(DP) floating-point arithmetic. When an entry of the DP w vector is smaller than 107!, or when an
entry of the DP A or B array exceeds 10'3, the medium precision arrays are updated from the DP arrays
using matrix multiplication via the formulas

w:=B-w, B:=B-B, A:=A-A H:=A-H, (14)



where the hat notation indicates DP arrays. When an entry of the medium precision w vector is smaller
than the medium precision epsilon, or when an entry of the medium precision A or B array nearly
exceeds the largest integer value exactly representable in medium precision, then the full precision arrays
are updated from the medium precision arrays using similar formulas. On large problems the three-level
scheme is typically 100X faster than a straightforward implementation using only full precision.

Considerable care must be taken in this implementation to correctly detect when precision has been
exhausted at each level, to reliably process the handoff to higher or lower level of precision, and to recover
from a situation where an iteration must be abandoned due to precision overflow. Also, advanced multi-
precision arithmetic techniques, such as fast Fourier transform (FFT)-based multiplication, are required
to obtain optimal performance on large problems. For full details see [7], [3].

5 Numerical reliability

While these computations do not constitute formal mathematical proofs, with some care these results can
be very reliable. Figure [1|illustrates the process of finding a relation using the scheme described above.
In particular, the graph shows the base-10 logarithm of the minimum absolute value of the w vector
(vertical axis), plotted against the iteration number (horizontal axis), in the multipair PSLQ computer
run that produced the 36-degree minimal polynomial corresponding to the case (z,y) = (1/13,1/13).

Note that as the algorithm proceeds, the minimum absolute value of the w vector steadily decreases,
from approximately 10~7°% to approximately 1073874 but at iteration 17,021 abruptly drops to ap-
proximately 1075990 4 drop of 2126 orders of magnitude. Note that since the run employed 6000-digit
precision, the value 10799 is effectively zero, so the algorithm terminates here. In other words, the
polynomial relation found by the computer run holds to roughly 2126 digits beyond the precision level
required to discover it. This dynamic range at the iteration of detection can thus be considered a “con-
fidence level” of the result’s numerical reliability. In the computer runs for the present study, all results
obtained by multipair PSLQ runs exhibited a dynamic range of at least several hundred digits, and in
most cases several thousand digits.

Additionally, in every case studied below, the set of coefficients found for a 9 (x,y) polynomial has
shape akin to an asymmetric parabola, with small coefficients at the start (often 1), a maximum size
near the middle and small again at the end. Table|l| (shown in a very small font), presents the degree-36
minimal polynomial found by the author’s program for the case (z,y) = (1/13,1/13), and Table[2]presents
the degree-32 minimal polynomial found by the author’s program for the case (x,y) = (1/24,9/24). Each
is typical of Poisson ¥s(x,y) polynomials, in that the initial coefficient is £1, then coefficients ascend to
a maximum size (here roughly 10'° and 10'3°, respectively), and then descend back down to 1.

This asymmetric parabolic pattern, from tiny to huge to tiny, is strong numerical evidence that
the polynomial produced by the computer program is the true minimal polynomial associated in these
cases, and that all hardware, software and application code performed flawlessly, since otherwise it is
exceedingly unlikely that the final set of coefficients would have this distinctive and highly improbable
pattern. By contrast, in cases where the program fails to find a numerically significant relation, say due
to a coding bug, insufficient degree or insufficient precision, the resulting erroneous integer coeflicients
typically are all roughly the same size, within one or two orders of magnitude, as if generated by a uniform
pseudorandom generator. Visually speaking, an erroneous set of coefficients appears as a rectangle rather
than an asymmetric parabola.

6 High-level computational algorithm

As mentioned above, a key breakthrough in the study of these Poisson polynomials was the discovery, by
Borwein and Crandall, that both ¢o(x,y) and ¥a(x,y) can be numerically computed very rapidly using
theta functions from the theory of elliptic functions. Unfortunately, the formulas given in [5] for v5(z, y)
are flawed, but were presented above (Section [2)) in corrected form. In particular, here is the high-level
algorithm employed in this study to discover the 15 (x,y) polynomials:
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Table 1: Degree-36 minimal polynomial found for the case (z,y) = (1/13,1/13)
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Table 2: Degree-32 minimal polynomial found for the case (z,y) = (1/24,9/24)
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Figure 1: Plot of log;, min; |w;| in the multipair PSLQ computer run for the case (z,y) = (1/13,1/13),
showing the detection of the relation at iteration 17,021.

1. Given rationals (z,y) = (p/s,q/s), typically satisfying 1 < p < ¢ < s/2 for s < 40, with
ged(p, q,8) = 1, select a conjectured minimal polynomial degree m (say from Kimberley’s rule), a
medium precision level P; digits, a full precision level P, digits and other parameters for the run.

2. Calculate ¥s(z,y) to Py-digit precision using the formula (from Section [2[ above)

)

ba(z,y) = —ﬁ log ‘2M(22, q) (\/5 A2z, q) — 1)

where ¢ = e ™, 2 =7/2 - (y + iz), Im(2) denotes imaginary part, and

03(2,9) 03(z,9)
w(z,q) = exp (—2Im?(2) /7 , Mz,q) = . 15
Compute 03(z,q) and 4(z, q) using the following rapidly convergent formulas from [8, pg. 52]:
05(z,q) =1+2 Z qu cos(2kz),
k=1
Oa(z,q) =1+2> (=1)*¢" cos(2kz). (16)
k=1

3. Calculate o = exp(8msia(x,y)) to Pp-digit precision and generate the (m + 1)-long vector X =
(1,02, ,a™).

4. Apply a three-level multipair PSLQ algorithm to find a numerically significant integer relation for
X, if one exists (see Sections and [9).



5. If a numerically significant relation is not found, try again with a larger degree m and/or higher
precision Ps. If a tentative relation is found, employ Mathematica or Maple to ensure that the
resulting polynomial is irreducible. If it is not, rerun the problem with reduced degree m, until a
degree m is found that produces a numerically significant relation passing the irreducibility test.

Previous computations in the ¢o(z,y) study, as catalogued in [4], found that whenever s is even, the
corresponding minimal polynomial is always palindromic, i.e., coefficient ay = a,,—r, where m is the
degree. In such cases, one can apply the fact that if « satisfies a palindromic polynomial of degree m,
then a+ 1/« satisfies a polynomial of degree m/2 (thus greatly reducing the run time), and the degree-m
polynomial satisfied by a can then be easily reconstructed from the degree-m/2 polynomial satisfied by
a+ 1/a [15]. Unfortunately, hardly any of the minimal polynomials found in the present study exhibit
the palindromic property, either for odd s or even s, so no computational savings of this type is possible
in these runs. However, as it turns out, the costs of the ¥s(p/s, ¢/s) runs with even s are typically much
less than for odd s of similar size, since the degrees and coefficients are smaller.

7 Results and analysis

It can be seen from formula that ¥9(a+ z,b+y) = Yo(x,y), for any integers a, b, so there is no need
to consider the cases (x,y) = (p/s,q/s), where either p or ¢ is negative or where either p or ¢ exceeds
s. In fact, by symmetry it follows that only cases where 1 < p < ¢ < s/2, with ged(p, g, s) = 1, need be
examined, since otherwise these cases are equivalent to cases with smaller p,q and s.

For this study, 1,017 individual cases were run, using the algorithms and software described in Sections
[3] through [6] In particular, these cases are: (z,y) = (p/s,q/s), where 1 < p < ¢ < s/2, ged(p,q,s) = 1,
for 10 < s < 25 and also for s = 26, 28, 30, 32, 34, 36 and 40. Some of these runs required up to 150,000-
digit arithmetic. The minimal polynomials produced by these runs have coefficients as large as 10920,
Run times are typically 50-125X higher than the times for the corresponding ¢ (2, y) cases. The output
files, with the full recovered polynomials, are quite large but are available from the author. Statistics for
a brief selection of these runs are shown in Table

Most of these runs were performed on an Apple Mac Studio computer with an M4 Max processor and
14 cores. The application program implementing the algorithm described above in Section [6] was coded
using an arbitrary precision package, written by the present author, with a high-level language interface
and FFT-based multiplication, which greatly accelerates very high precision computation [2, [3]. The
resulting performance is comparable to that of MPFR [12], but with a high-level programming interface
and a much simpler software installation process.

For each of these cases, the computer run exhibited a drop of at least several hundred orders of mag-
nitude at detection and, in most cases, to several thousand orders of magnitude. Thus the polynomials
produced by these calculations hold to hundreds and, in most cases, to thousands of digits beyond the
precision required to discover them. Note, for example, in the last row of Table[3| that the full precision
level was 140,000 digits and the detection level was 2.00 x 107118993 This means that the recovered
minimal polynomial relation holds to roughly 22,000 digits beyond the level of precision required to
discover it. Wolfram Mathematica 14.3 confirmed that each of these polynomials is irreducible.

The principal experimental findings of this study are the following:

1. A generalized Kimberley rule. Given (z,y) = (p/s, q/s), with 1 < p < ¢ < s/2 and ged(p, ¢, s) =
1, let ¢o(z,y) be defined as in (1), with o = exp(—8msi2(z,y)). Then the degree of the minimal
polynomial of « is given by this rule:

1. If s is even or odd, and p = ¢, then the degree is given by Kimberley’s rule .

2. Otherwise if s is odd, then the degree is given by Kimberley’s rule, except for a few cases where
the degree is half Kimberley’s rule.



Detection Largest CPU

s|p q m P P level | coefficient time
10 | 1 4 8 200 1000 7.25e -50 1.13e 45 0.04
11 12| 2| 30 600 3000 3.01e -2301 2.83e 76 5.45
12 14| 5 16 400 2000 9.04e -555 6.13¢ 71 0.35
1312] 2| 36 800 5000 1.51e -3874 | 4.93e 256 17.67
1412 3| 24 600 4000 5.13e -1392 | 1.16e 107 2.94
1512 2| 32 1000 6000 2.46e -3640 | 2.78e 113 14.90
16 2] 3| 32 800 4000 2.10e -2854 6.58e 88 8.94
17 13| 3| 64| 2500 | 20000 | 2.20e-15969 | 3.91e 286 911.91
1812] 5| 36 800 5000 3.62¢ -4281 | 6.99e 237 18.93
19 3] 3| 90| 4000 | 40000 | 3.70e-35399 | 1.36e 392 8426.15
201 3| 4| 32 1000 5000 2.94e -3757 | 1.93e 283 11.23
21 | 4| 4| 96| 5000 | 50000 | 1.35e -44538 | 3.36e 462 24148.22
22 | 1 6| 60| 2000 18000 | 4.46e -13901 | 6.88e 230 863.87
23 16| 6| 132 | 10000 | 100000 | 2.44e -92118 | 4.59e 695 | 293444.22
24 12| 5| 64| 3000 | 22000 | 3.68e-17273 | 4.82e 504 1572.62
25 | 4| 4| 100 | 7500 | 75000 | 3.78e-57355 | 1.12e 572 52476.92
26 | 4| 5| 72| 4000 | 35000 | 1.24e -23557 | 2.26e 711 4117.15
28 | 1 8| 96 | 5000 | 50000 | 1.31e-46099 | 2.21e 666 24986.04
3012 9] 64| 4000 | 30000 | 5.50e -22683 | 8.55e 477 2669.25
32 | 2] 9128 | 10000 | 100000 | 2.78e -92006 | 6.44e 716 | 266489.97
34 | 4| 15 | 128 | 11000 | 110000 | 1.34e -98262 | 4.33e 765 | 335228.14
36 | 4 | 13 | 144 | 15000 | 150000 | 5.33e-132837 | 3.36e 920 | 1014451.90
40 | 1 4 | 128 | 16000 | 140000 | 2.00e-118003 | 1.20e 919 | 414242.84

Table 3: Run statistics for a brief sample of runs from the catalogue. Columns:
s, p, q: Identify the case (z,y) = (p/s,q/s).
m: Degree of the discovered minimal polynomial.
P, and P»: Medium and full precision levels employed for the run in decimal digits.
Detection level: Size of max; |w;| at detection; in each case, min; |w;| ~ 10~ 2.
Largest coefficient: Approx. size of the largest coefficient in the resulting minimal polynomial.
CPU time: Total run time in processor core seconds (shown for uniformity to two decimal places,
but not repeatable beyond about three significant digits).



3. If s is even, and both p and ¢ are odd, then the degree is given by Kimberley’s rule, except for a
few cases where the degree is half Kimberley’s rule.

4. If s is even, with one of p or ¢ even and the other odd, then the degree is given by twice Kimberley’s
rule, except for a few cases where the degree is equal to Kimberley’s rule.

2. Sharing of minimal polynomials. One particularly intriguing feature of the catalogue of results
(a feature also of the ¢o(x,y) results) is that for a given integer s, many of the minimal polynomials
corresponding to various (z,y) = (p/s,q/s) cases are identical, even though the a numerical values
are distinct. Tables [ through [7] below present a complete summary of these data extracted from the
computer runs: for a given s, each row lists (p,q) cases, corresponding to (x,y) = (p/s,q/s), whose
minimal polynomials are identical.

In examining these data, one striking regularity is observed: For a given s, all the cases (z,y) =
(p/s,p/s), where 1 < p < s/2 and ged(p,s) = 1, share the same minimal polynomial. For example,
for s = 36, the minimal polynomials for the cases (1,1),(5,5),(7,7),(11,11),(13,13), (17,17) are all
identical. Note that this represents a complete set of (p/36,p/36) with 1 < p < 18 and ged(p, 36) = 1.

This sharing feature of ¢ (2, y), like that of 12(x, y), has not been observed before in studies of Poisson
polynomials, and the simplicity of this assertion suggests that it might well be amenable to further
theoretical analysis. Doubtless other regularities exist in this large set of data, as yet unrecognized. The
reader is invited to search these tables for additional interesting regularities.

It should be emphasized again, however, that these findings are experimental and tentative; the
present author has not been able to find formal proofs. But the relative simplicity of these assertions
suggests that they may well be amenable to proof or disproof.

8 Conclusions and future research

While these computational results and observations are a useful start, it is clear that a fuller understand-
ing of the structure and behavior of Poisson polynomials will require additional effort. In particular,
recall that the catalogued computations merely cover the cases (x,y) = (p/s,q/s), where 1 < p,q < s/2,
with ged(p,q,s) = 1, for 10 < s < 25 and also for s = 26,28, 30,32,34,36 and 40. To obtain further
confidence in the three assertions mentioned in the previous section, these limits should be increased,
which will require substantial additional computation. In addition, several questions still remain, such
as what regularity is exhibited by the exceptional cases, and, even more intriguingly, why certain sets of
cases share the same minimal polynomial, as noted in Tables [4 through [7]

Note also that all of the research results and analyses to date are for the simple two-dimensional
cases, namely ¢o(x,y) and ¥o(z,y). The study [5] included brief mention of three and higher dimensions,
but at present this research is hampered by the lack of rapid and universally applicable computational
algorithms for higher dimensions, analogous to those listed above for ¢s(z,y) and 2 (z,y) in Section
Clearly one important next step in this research is to re-examine earlier studies and elsewhere for hints
to computational techniques and theoretical results applicable to higher dimensions.

The arbitrary precision package employed in this study [2] is thread-safe, and the multi-pair PSLQ
algorithm exhibits moderate parallelism for large problems. Speedups of 12X on a 16-core system have
been achieved. But the question remains whether some other algorithm is more effective for these
very large problems and precision levels, and further is amenable to highly parallel processing. Note
that simply converting a straightforward full-precision implementation of an algorithm such as multipair
PSLQ for parallel processing, which may achieve large parallel speedups, is not helpful, since performance
timings in parallel computing must be compared to the most efficient practical serial algorithm (which
in this case is an algorithm, such as the three-level multipair PSLQ algorithm, that performs nearly all
iterations in double precision); otherwise parallel speedups are illusory.
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9 Appendix: PSLQ and multi-pair PSLQ

Given an input vector x = (x,1 < j < n) of real numbers, typically given as high-precision floating-point
values, the PSLQ and multipair PSLQ integer relation algorithms attempt to find a nontrivial vector of
integers (a;), if one exists, such that

a1x1 + asxe + -+ + apr, =0, (17)

to within the numeric precision being employed. The name “PSLQ” derives from its usage of a partial
sum of squares vector and an LQ (lower-diagonal-orthogonal) matrix factorization.

The multipair PSLQ algorithm attempts to perform multiple iterations of the standard PSLQ algo-
rithm in a single iteration. It is moderately parallelizable and has the added benefit of running faster,
even on a single processor, and of being even more efficient with precision: in most cases it can detect
a relation when the numeric precision is only a few percent higher than a minimum bound [7]. More
complete details on these algorithms, including details on multilevel precision implementations, are given
in [7] and [3].

9.1 The standard PSLQ algorithm

Let x be the n-long input real vector, let nint denote the nearest integer function (for exact half-integer
values, define nint to be the integer with greater absolute value) and select v > 1/4/3 (we typically select

v = 1/4/3, since this is the most efficient with precision).
Initialize:

1. For j :=1ton: for i := 1 ton: if i = j then set A;; := 1 and B;; := 1 else set A;; := 0 and
B;; := 0; endfor; endfor.

2. For k :=1 to n: set s := Z?:k m?; endfor. Set t = 1/sy. For k :=1 to n: set yx := tay; sg :=
tsy; endfor.

3. Initial H: For j :=1ton —1: for i :== 1 to j — 1: set H;; := 0; endfor; set H;; := s;j11/s;; for
i:=j+1tomn: set Hj; := —y,;y,/(sj8;4+1); endfor; endfor.

4. Reduce H: For i :=2 to n: for j:=1i—1 to 1 step —1: set t := nint(H;;/H,;); and y; := y; + ty;;
for k := 1 to j: set Hy, = H;;, — tHjx; endfor; for k := 1 to n: set A := A, — tA;, and
By, := By; + tByy; endfor; endfor; endfor.

Iteration: Repeat the following steps until precision has been exhausted or a relation has been detected.

1. Select m such that v*|H;;| is maximal when i = m.

2. Exchange the entries of y indexed m and m + 1, the corresponding rows of A and H, and the
corresponding columns of B.

3. Remove corner on H diagonal: If m < n — 2 then set ty := /H2,, +Hn21’m+1, t1 := Hpym/to
and to := Hpymy1/to; for ¢ := m to n: set tg := Hip, t4 := Hime1, Him = tits + taots4 and
H; g1 := —totg +t1ty; endfor; endif.

4. Reduce H: For i :=m+1 to n: for j := min(i —1,m+1) to 1 step —1: set ¢t := nint(H;;/H,;) and
y; 1= y; +tys; for k:=1to j: set Hy, := Hy, — tHjy; endfor; for k := 1 to n: set Ay, 1= Aj —tAjy
and By; := By + tBy;; endfor; endfor; endfor.

5. Norm bound: Compute M := 1/max;|H;;|. Then there can exist no relation vector whose Eu-
clidean norm is less than M.
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6.

9.2

Termination test: If the largest entry of A or B exceeds the level of numeric precision used, then
precision is exhausted. If the smallest entry of the y vector is less than the detection threshold,
and the dynamic range between that smallest entry and the largest entry of y is sufficiently large
(say at least 30 orders of magnitude), then a relation may have been detected and is given in the
corresponding row of B.

The multipair PSLQ algorithm

Let x be the n-long input real vector, let nint denote the nearest integer function as before and select
v > /4/3 (we typically select v = 1/4/3, since this is the most efficient with precision) and g = 0.4.

Initialize:

1.

For j :=1ton: for i := 1 to n: if i = j then set A;; := 1 and B;; := 1 else set A;; := 0 and
B;; := 0; endfor; endfor.

- For k= 1to n: set sy, := />"_, a%; endfor; set t = 1/s1; for k := 1to n: set yy, := tay; sy 1= tsy;

endfor.

Initial H: For j :=1ton —1: for ¢ := 1 to j — 1: set H;; := 0; endfor; set H;; := sj41/s;; for
i:=j41ton: set Hjj := —y;y;/(s;5;41); endfor; endfor.

Iteration: Repeat the following steps until precision has been exhausted or a relation has been detected.

. Sort the entries of the (n — 1)-long vector {y!|H;;|} in decreasing order, producing the sort indices.

. Beginning at the sort index m; corresponding to the largest v¢|H;;|, select pairs of indices (m;, m; +

1), where m; is the sort index. If at any step either m; or m; + 1 has already been selected or is
outside the array bound, pass to the next index in the list. Continue until either Sn pairs have
been selected, or the list is exhausted. Let p denote the number of pairs actually selected in this
manner.

For i := 1 to p, exchange the entries of y indexed m; and m; + 1, and the corresponding rows of A,
B and H; endfor.

+ H2

mq,mi+1)

Remove corners on H diagonal: For ¢ := 1 to p: if m; < n—2 then set tg := \/anm

t1 := Hp,m;/to and to := Hpyy, m,41/t0; for i := m; to n: set t3 1= Hium,; ta = Him,41;
H; o, i=titz + tats; and H; ;1 1= —tats + t1t4; endfor; endif; endfor.

Reduce H: Fori:=2ton: forj:=1ton—i+1:setl:=i+j—1;fork:=j+1tol—1: set
H,; := Hy; — Ti, Hyj; endfor; set Tj; := nint(H,;/H;;) and H;; := H;; — T;;H;;; endfor; endfor.

Update y: For j :=1ton —1: fori:=j+1 to n: set y; := y; + T;;¥;; endfor; endfor.

Update A and B: For k:=1to n: for j :=1ton —1: for i :=j + 1 to n: set Ay, := Air, — T3; A
and By, := Bji, + T Byi; endfor; endfor; endfor.

Norm bound: Compute M := 1/max; |H,;;|. Then there can exist no relation vector whose Eu-
clidean norm is less than M.

Termination test: If the largest entry of A or B exceeds the level of numeric precision used, then
precision is exhausted. If the smallest entry of the y vector is less than the detection threshold,
and the dynamic range between that smallest entry and the largest entry of y is sufficiently large
(say at least 30 orders of magnitude), then a relation may have been detected and is given in the
corresponding row of B.
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s=26 | (1,4),(110),(2,5),(2,7),(3,4),(312), (5, 6), (6,11), (7, 8), ( 8,11), ( 9,10), ( 9,12)
(1,2),(1,6),(2,9),(3,6),(3,8),(4,5),(4,11), (5,10), ( 7,10), ( 7,12), ( 8, 9), (11,12)
(1,8),(2,3),(4,7),(512), (6,9), (10,11)

(1,5), (3,11), (7, 9)
(1,1),(3,3),(5,5),(7,7),(9,9), (11,11)
(1,3),(1,7),(1,9),(1,11),(3,5), (3,7),(3,9), (5 7),(5,9), (511), (7,11), (9,11)
(1,12), (2,11), ( 3,10), (4, 9), (5, 8), (6, 7)
s=28](27),(4,7),(6,7),(7,8), (7,10, ( 7,12)
(1,13), (3,11), (5, 9)
(1,2), (1,12), (2,13), (3, 6), (3,8), (4,5), (4,9), (5,10), (6,11), ( 8,11), ( 9,10), (12,13)
(1,6), (1,8), (2 5),(2,9),(3,4), (3,10), (4,11), ( 5,12), ( 6,13), ( 8,13), ( 9,12), (10,11)
(1,5), (1,11), ( 3,5), ( 3,13), (9,11), ( 9,13)
(1,7, (3,7),(57),(7,9), (7,11), ( 7,13)
(1,4), (1,10), (2, 3), ( 2,11), ( 3,12), ( 4,13), ( 5, 6), ( 5, 8), ( 6, 9), ( 8, 9), (10,13), (11,12)
(1,1),(3,3),(5,5),(9,9), (11,11), (13,13)
(1,3),(1,9),(3,9), (5,11), ( 5,13), (11,13)
s=30 | (1,14), (2,13), (4,11), (7, 8)
(1,3), (1,7), (1,13), (3,11), (7,9), ( 7,11), ( 9,13), (11,13)
(3,10), ( 5, 6), ( 5,12), ( 9,10)
(1,10), (2, 5), (4, 5), (5,8), ( 5,14), ( 7,10), (10,11), (10,13)
(1,11), (3, 5), (5,9), ( 7,13)
(1,4), (2,7), (813), (11,14)
( L, 2)7 ( 1, 8)3 ( 2311)? ( 4, 7) ( 4713)a ( 7?14)ﬂ ( 8711)7 (13714)
(1,6), (2.3),(3,8), (4,9), (6,11), (7.12), (9,14), (12,13)
(1,1), (7,7), (11,11), (13,13)
(1,5),(1,9), (3,7, (3,13), (5, 7), ( 5,11), ( 5,13), ( 9,11)
(1,12), (2,9), (3,4), (3,14), (6,7), (6,13), ( 8, 9), (11,12)
s=32 | (1,6), (1,10), (2, 3), (2, 5), ( 2,11), ( 2,13), ( 3,14), ( 5,14), (6, 7), ( 6, 9), ( 6,15), ( 7,10),
(19,10), (10,15), (11,14), (13,14)
(1,5),(1,13), (3, 7), (3,15), (5, 7), (9,11), ( 9,13), (11,15)
(1,1),(3,3),(5,5),(7,7),(9,9), (11,11), (13,13), (15,15)
( 17 7)7 ( 17 9)’ ( 3’ 5)7 ( 3711)7 ( 57]‘3)’ ( 7’15)’ ( 9715)7 (11713)
(1,3), (1,11), (3,9), (5,9), (515), (7,11), ( 7,13), (13,15)
(1,8),(3,8), (5 8), (7, 8),(8,9), (811), (8,13), ( 8,15)
(1,15), ( 3,13), ( 5,11), (7, 9)
(1,2), (1,14), (2,7), (2,9), (2,15), (3, 6), ( 3,10), ( 5, 6), ( 5,10), ( 6,11), ( 6,13), ( 7,14),

(19,14), (10,11), (10,13), (14,15)
(1,4), (1,12), (3,4), (3,12), (4,5), (4, 7), (4,9), (411), (4,13), (4,15), ( 5,12), ( 7,12),
(9,12), (11,12), (12,13), (12,15)

Table 6: Each row gives cases (p/s, q/s) that share the same minimal polynomial; 26 < s < 32
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s=34|(12),(L8),(213),(3,6),(3,10), (4,9), (415), (5,6), (510), (7,12), ( 7,14), ( 8,13),
(19,16), (11,12), (11,14), (15,16)
(1,5), (1,7), (3,13), (3,15), ( 5,9), ( 7,15), ( 9,11), (11,13)
(1,4), (2,9), (3,12), (5,14), (6, 7), ( 8,15), (10,11), (13,16)
(1,1),(3,3),(55),(7,7),(9,9), (11,11), (13,13), (15,15)
(1,6), (1,14), (2,5), (2,11), (3, 8), (3,16), (4, 5), (4, 7), (6,15), (7, 8), (9,10), ( 9,14),
(10,13), (11,16), (12,13), (12,15)
(1,10), (1,12), (2,3), (2, 7), (3,4), (4,11), (5, 8), ( 5,16), (6, 9), ( 6,13), ( 7,16), ( 8,11),
(9,12), (10,15), (13.14), (14,15)
(1,13), (3, 5), ( 7,11), ( 9,15)
(1,16), (2,15), (3,14), (4,13), ( 5,12), (6,11), ( 7,10), (8, 9)
(1,3), (1,9, (1,11), (1,15), (3,7), (3,9), (3,11), (5, 7), (5,11), ( 5,13), (5,15), ( 7, 9),
(7,13), (9,13), (11,15), (13,15)
s=36| (1,6),(1,12),(5,6), (5,12), (6,7), (6,11), (6,13), ( 6,17), ( 7,12), (11,12), (12,13), (12,17)
1,15), (3,5), (3, 7), ( 3.17), (11,15, (13,15)
1,2), (1,16, ( 2,17), (4, 7), (4 11), ( 5, 8), ( 5,10), ( 7,14), ( 8,13), (10,13), (11,14), (16,17)
1,9), (5 9), (7,9, (9,11), (9,13), ( 9,17)
1,4), (1,14), (2, 5), ( 2,13), (4,17), ( 5,16), ( 7 8), (7,10), ( 8,11), (10,11), (13,16), (14,17)
1,8), ( 1,10), (2, 7), ( 2,11), (4, 5), ( 4,13), ( 5,14), ( 7,16), ( 8,17), (10,17), (11,16), (13,14)
11), (5, 5), (7,7), (1L,11), (13,13), (17,17)
2,3), (2,15), (3, 4), (3, 8), (3,10), ( 3,14), ( 3,16), ( 4,15), ( 8,15), (10,15), (14,15), (15,16)
1,5), (1,7), (511), ( 7,13), (11,17), (13,17)
1,17), ( 5,13), ( 7,11)

2,9), (4 9), (8,9), (9,10), (9,14), ( 9,16)
» 1)y (5,17), (7,17), (11,13)
13), ((5,15), (7,15), (15,17)

7.7), (9, 9), (11,11), (13,13), (17,17), (19,19)
5,11), ( 5,19), ( 7,15), ( 9,15), (15,17)

5,6), (5,14), ( 5,18), (14,15), (15,18)

,10), ( 9,10), (10,11), (10,13), (10,17), (10,19)
11

Nk
Ut
~
—
N)
—
(S
\_/v
—~
AAAA/—\ ~

1 10), ( 3,10), (7
. 7). (1,17), (3,11), ( 3,19), (7, 9), ( 9,17), (11,13), (13,19)
L6), (1,14), (2,3), (2, 7), (2,13), (2,17), ( 3,18), ( 6,11), ( 6,19), ( 7,18), ( 9,14), (11,14),
(13,18), (14,19), (17,18)
(1,11), (3, 7), (9,19), (13,17)
(1,5), (3,15), (5, 7), ( 5, 9), ( 5,17), (11,15), (13,15), (15,19)
(1. 8), ( 1,12), (3, 4), ( 3.16), (4, 7), ( 4,13), ( 4,17), (7,16), (8, 9), ( 8,11), ( 8,19), ( 9,12),
(11,12), (12,19), (13,16), (16,17)
(1,3), (1,13), (3,9), ( 7,19), (11,17), (17,19)
(1,9), (3,13), ( 7,17), (11,19)
(1,2), (118),(2,9), (2.11), (2,19), (3,6), ( 3,14), (6,7), (6,13), (6,17), ( 7,14), (9,18),
(11,18), (13,14), (14,17), (18,19)
(4,5), (4,15), (5, 8), ( 5,12), ( 5,16), ( 8,15), (12,15), (15,16)
(1,4), (1,16), ( 3,8), ( 3,12), (4, 9), (4,11), (4,19), ( 7, 8), ( 7,12), ( 8,13), ( 8,17), ( 9,16),
(

11,16), (12,13), (12,17), (16,19)
(1,19), (3,17), (7,13), (9,11)

Table 7: Each row gives cases (p/s, q/s) that share the same minimal polynomial; 34 < s < 40
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