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1. Introduction. Let x = (x1, 29, -+ ,z,) be a vector of real or complex numbers. z
is said to possess an integer relation if there exist integers a;, not all zero, such that

a1 + agxy + - +apr, = 0.

By an integer relation algorithm, we mean a practical computational scheme that can
recover the vector of integers a;, if it exists, or can produce bounds within which no
integer relation exists. As we will see in the examples below, an integer relation algorithm
can be used to recognize a computed constant in terms of a formula involving known
constants, or to discover an underlying relation between quantities that can be computed
to high precision.

At the present time, the most widely used algorithm for integer relation detection
is the “PSLQ" algorithm of mathematician-sculptor Helaman Ferguson [11, 4], although
the “LLL” algorithm is also used for this purpose. One detailed comparison of these two
methods found that PSLQ appears to be more numerically stable than LLL, in the sense
that PSLQ reliably finds a relation, beginning nearly at the minimal precision level for
the relation, whereas LLL sometimes finds a relation at one level but fails at a somewhat
higher level [10]. This study also found that tuned implementations of PSLQ (which
select multiple pairs of indices, and which employ two or three levels of precision [4]) are
significantly more efficient than typical implementations of LLL. Additional research may
further cast light on the relative merits of these two schemes. In the following, though,
we will focus on PSLQ.

PSLQ operates by constructing a sequence of integer-valued matrices B,, that reduces
the vector y = xB,, until either the relation is found (as one of the columns of B,), or
else precision is exhausted. At the same time, PSLQ generates a steadily growing bound
on the size of any possible relation. When a relation is found, the size of smallest entry
of the vector y abruptly drops to roughly “epsilon” (i.e. 1077, where p is the number
of digits of precision). The size of this drop can be viewed as a “confidence level” that
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the relation is real and not merely a numerical artifact. A drop of 20 or more orders of
magnitude almost always indicates a real relation (see Figure 1).
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Figure 1: log,, miny |yx| versus iteration number in a typical PSLQ run

Very high precision arithmetic must be used with PSLQ or any other integer relation
scheme. If one wishes to recover a relation of length n, with coefficients of maximum
size d digits, then the input vector x must be specified to at least nd digits, and one
must employ nd-digit floating-point arithmetic. Maple and Mathematica include multiple
precision arithmetic facilities and Maple ships with a full implementation of PSLQ. One
may also use any of several freeware multiprecision software packages, for example the
ARPREC package by the first author and colleagues at LBNL [7]. In the remaining
sections we describe various representative applications of PSLQ. More detail about these
examples is given in [8] and the references therein.

2. Finding Algebraic Relations Using PSLQ. One immediate and impressive ap-
plication of PSLQ in the field of mathematical number theory is to determine whether or
not a given constant a;, whose value can be computed to high precision, is algebraic of some
degree n or less. This can be done by first computing the vector z = (1,,a?,- -+, a™) to
high precision and then applying an integer relation algorithm to the resulting (n+1)-long
vector. If a relation is found for x, then this relation vector is precisely the set of integer
coefficients of a polynomial satisfied by a (to the precision specified).

One of the first results of this sort was the identification of the constant Bs =
3.54409035955 . . .. By is the third bifurcation point of the logistic map 1 = rag(l—xg),
which exhibits period doubling shortly before the onset of chaos. To be precise, Bs is the
smallest value of the parameter r such that successive iterates x; exhibit eight-way peri-
odicity instead of four-way periodicity. Bs can be computed to arbitrarily high precision
by means of an iterative algorithm [6]. When PSLQ is applied to the 13-long vector



(1,Bs, B2, B3, ... B1?), one obtains the result that Bj is a root of the polynomial

0 = 4913 + 2108t — 604¢> — 977t* + 8¢° + 44¢5 + 3927 — 193¢t® — 40¢°
+ 48¢10 — 1241 4 412,

Recently, By = 3.564407268705 - - - , the fourth bifurcation point of the logistic map,
was identified using PSLQ by British physicist David Broadhurst [4]. Some conjectural
reasoning had suggested that B, might satisfy a 240-degree polynomial, and some further
analysis had suggested that the constant o = —34(E4 — 2) might satisfy a 120-degree
polynomial. In order to test this hypothesis, Broadhurst applied a PSLQ program to
the 121-long vector (1,a,a?, -+, '), Indeed, a relation was found, though 10,000-digit
arithmetic was required. The recovered integer coefficients descend monotonically from
25730 ~ 1.986 x 10™ to 1. This was subsequently proven using Groebner bases [6].

3. A New Formula for Pi. Through the centuries mathematicians have assumed that
there is no shortcut to computing digits of 7 beginning at some position n. Thus, it came
as no small surprise when such an algorithm was discovered in 1996 [3]. In particular,
this simple scheme allows one to compute binary or hexadecimal (base-16) digits of 7
starting at an arbitrary position, without computing any of the preceding digits. For
instance, the one millionth hex digit of 7 can be computed in this manner on a current-
generation personal computer in only about 10 seconds run time. This scheme is based
on the following new formula, which was discovered in 1996 using PSLQ:
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Since 1996, numerous formulas of this same type have been found for various constants
[1, 8]. For example, a similar formula was found that permits arbitrary-position binary
digits of 7% to be calculated; here is a formula for 72 that permits arbitrary ternary
(base-3) digits of 7 to be calculated:
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Sadly, it has recently been proven that there is no formula of this type for 7 itself in other
than a binary base [8, Ch. 3].

4. Identification of Multiple Zeta Constants A large number of results has been
found over the last 15 years using PSLQ in the course of research on multiple zeta sums,
such as those shown in Table 1. After computing the numerical values of these constants,
a PSLQ program was used to determine if a given constant satisfied an identity of a
conjectured form. These efforts produced numerous empirical evaluations and suggested



general results [2, 9].
and general results.
are given in Table 1. In the table, ((t) =

Eventually, elegant proofs were found for many of these specific
Three examples of PSLQ results that were subsequently proven
= >, j" is the Riemann zeta function, and

Li,(z) = >772, 275" denotes the polylogarithm function.
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Table 1: Some multiple zeta identities found by PSLQ

5. Ising integrals. One particularly fruitful application of these methods is the evalu-
ation of definite integrals, such as those that arise in mathematical physics. For example,
recently the present authors, together with Richard Crandall, investigated three classes
of n-fold integrals, which arise in Ising theory and also (in some cases) in quantum field

theory:
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where in the last line uy, = ¢ty - - - t%.

Computing high-precision values of n-fold integrals such as this is very difficult for
n greater than three or four. But we found a simple substitution that reduces the C'
integrals to 1-dimensional integrals:
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where K(t) is the modified Bessel function. In this form, we were able to evaluate C,,
to over 1000-digit accuracy, for n up to 1024. With these numerical values in hand, we
quickly found that C; =2, Co =1, C3 = L_5(2) = >, -, (1/(3n+ 1) = 1/(3n + 2)?),
and C; = 7¢(3)/12. We also discovered numerically that
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where 7y is Fuler’s constant. Further computation established results such as:
Dy = 1/3, D3=8+471?/3 —27L_3(2), Dy=47*/9—1/6—"7((3)/2
and

E, = 6—8log2, E;=10-—2r>—8log2+ 32log®2

Ey = 22—82((3) —24log?2 + 1761og® 2 — 256(log* 2) /3
+1672 log 2 — 227% /3

Es = 42 —1984Liy(1/2) + 1897 /10 — 74¢(3) — 1272((3) log 2
+407%log® 2 — 6272 /3 + 40(n* log 2) /3 + 88 log* 2
+464 log® 2 — 401og 2.

The Ej5 integral was found after transforming its defining 5-fold integral representation
into an extremely complicated 3-fold integral. We then computed this 3-fold integral to
250-digit precision, by using a parallel quadrature program implemented on 1024 CPUs of
a parallel computer system, and then discovered the above-listed experimental identity by
using PSLQ. This identity has a question mark because, unlike the others mentioned in
this paper, we do not yet have a formal proof. Nonetheless it is established numerically at
least 180 orders of magnitude beyond the level of numerical “chance,” and so we are quite
confident in the result. Such confidence is typically obtainable if the constants involved
can be computed to sufficiently high precision. Sometimes as with C, this is relatively
easy. In other cases, such as Ej, it involves much more labor.

6. Research questions. In spite of these and other successes, there is considerable
need for even more efficient schemes for both integer relation detection and numerical in-
tegration, especially the evaluation of multi-dimensional integrals. With regards to PSLQ),
there is interest in extending PSLQ) to more general number fields, such as quadratic num-
ber fields. Hopefully future research will yield better schemes that will in turn produce
more results of interest in mathematics and mathematical physics.
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