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1. Introduction
Let x = (x1, x2, · · · , xn) be a vector of real or complex numbers. x is said to possess

an integer relation if there exist integers ai, not all zero, such that

a1x1 + a2x2 + · · · + anxn = 0

By an integer relation algorithm, we mean a practical computational scheme that can
recover the vector of integers ai, if it exists, or can produce bounds within which no
integer relation exists. As we shall see, integer relation algorithms have a variety of
interesting applications, including the recognition of a numeric constant in terms of the
mathematical formula that it satisfies.

The problem of finding integer relations is not new. It was first studied by Euclid,
whose Euclidean algorithm solves this problem in the case n = 2. The generalization of
this problem for n > 2 was attempted by Euler, Jacobi, Poincaré, Minkowski, Perron,
Brun, Bernstein, among others. The first integer relation algorithm with the required
properties mentioned above was discovered in 1977 by Ferguson and Forcade [18].

There is a close connection between integer lattice reduction and integer relation de-
tection. Indeed, one common solution to the integer relation problem is to apply the
Lenstra-Lenstra-Lovasz (LLL) lattice reduction algorithm. However, there are some dif-
ficulties with this approach, notably the somewhat arbitrary selection of a required mul-
tiplier — if it is too small, or too large, the LLL solution will not be the desired integer
relation. These difficulties were addressed in the “HJLS” algorithm [19], which is based on
the LLL algorithm. Unfortunately, the HJLS algorithm suffers from numerical instability,
and it fails as a result in many cases of practical interest.
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2. The PSLQ Algorithm
At the present time, the most effective algorithm for integer relation detection is

Ferguson’s recently discovered “PSLQ” algorithm [17]. In addition to possessing good
numerical stability, PSLQ is guaranteed to find a relation in a polynomially bounded
number of iterations. The name “PSLQ” derives from its usage of a partial sum of squares
vector and a LQ (lower-diagonal-orthogonal) matrix factorization. A simple statement of
the PSLQ algorithm, equivalent to the original formulation, is as follows: Let x be the n-

long input real vector, and let nint denote the nearest integer function. Select γ ≥
√

4/3.
Then perform the following operations:

Initialize:

1. Set the n × n matrices A and B to the identity.

2. Compute the n-long vector s as sk :=
√∑n

j=k x2
j , and set y to the x vector, normal-

ized by s1.

3. Compute the initial n × (n − 1) matrix H as Hij = 0 if i < j, Hjj := sj+1/sj, and
Hij := −yiyj/(sjsj+1) if i > j.

4. Reduce H: For i := 2 to n: for j := i − 1 to 1 step −1: set t := nint(Hij/Hjj); and
yj := yj + tyi; for k := 1 to j: set Hik := Hik − tHjk; endfor; for k := 1 to n: set
Aik := Aik − tAjk and Bkj := Bkj + tBki; endfor; endfor; endfor.

Iterate until an entry of y is within a reasonable tolerance of zero, or precision has been
exhausted:

1. Select m such that γi|Hii| is maximal when i = m.

2. Exchange the entries of y indexed m and m + 1, the corresponding rows of A and
H, and the corresponding columns of B.

3. Remove the corner on H diagonal: If m ≤ n − 2 then set t0 :=
√

H2
mm + H2

m,m+1,

t1 := Hmm/t0 and t2 := Hm,m+1/t0; for i := m to n: set t3 := Him, t4 := Hi,m+1,
Him := t1t3 + t2t4 and Hi,m+1 := −t2t3 + t1t4; endfor; endif.

4. Reduce H: For i := m + 1 to n: for j := min(i − 1,m + 1) to 1 step −1: set
t := nint(Hij/Hjj) and yj := yj + tyi; for k := 1 to j: set Hik := Hik − tHjk; endfor;
for k := 1 to n: set Aik := Aik − tAjk and Bkj := Bkj + tBki; endfor; endfor; endfor.

5. Norm bound: Compute M := 1/ maxj |Hjj|. Then there can exist no relation vector
whose Euclidean norm is less than M .

Upon completion, the desired relation is found in the column of B corresponding to the
zero entry of y. Some efficient “multi-level” implementations of PSLQ, as well as a variant
of PSLQ that is well-suited for highly parallel computer systems, are given in [5].

It should be emphasized that for almost all applications of an integer relation algorithm
such as PSLQ, very high precision arithmetic must be used. Only a very small class of
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relations can be recovered reliably with the 64-bit IEEE floating-point arithmetic that
is available on current computer systems. In general, if one wishes to recover a relation
of length n, with coefficients of maximum size d digits, then the input vector x must be
specified to at least nd digits, and one must employ floating-point arithmetic accurate
to at least nd digits. The software products Maple and Mathematica include multiple
precision arithmetic facilities. One may also use any of several freeware multiprecision
software packages [1, 2, 15].

3. Finding Algebraic Relations Using PSLQ
One application of PSLQ in the field of mathematical number theory is to determine

whether or not a given constant α, whose value can be computed to high precision, is
algebraic of some degree n or less. This can be done by first computing the vector
x = (1, α, α2, · · · , αn) to high precision and then applying an integer relation algorithm.
If a relation is found for x, then this relation vector is precisely the set of integer coefficients
of a polynomial satisfied by α.

One of the first results of this sort was the identification of the constant B3 =
3.54409035955 · · · [1]. B3 is the third bifurcation point of the logistic map xk+1 =
rxk(1 − xk), which exhibits period doubling shortly before the onset of chaos. To be
precise, B3 is the smallest value of the parameter r such that successive iterates xk exhibit
eight-way periodicity instead of four-way periodicity. Computations using a predecessor
algorithm to PSLQ found that B3 is a root the polynomial

0 = 4913 + 2108t2 − 604t3 − 977t4 + 8t5 + 44t6 + 392t7 − 193t8 − 40t9

+ 48t10 − 12t11 + t12

Recently, B4 = 3.564407268705 · · ·, the fourth bifurcation point of the logistic map,
was identified using PSLQ by British physicist David Braodhurst [5]. Some conjectural
reasoning had suggested that B4 might satisfy a 240-degree polynomial, and some further
analysis had suggested that the constant α = −B4(B4 − 2) might satisfy a 120-degree
polynomial. In order to test this hypothesis, Broadhurst applied a PSLQ program to the
121-long vector (1, α, α2, · · · , α120). Indeed, a relation was found, although 10,000 digit
arithmetic was required. The recovered integer coefficients descend monotonically from
25730 ≈ 1.986 × 1072 to one.

4. A New Formula for Pi
Through the centuries mathematicians have assumed that there is no shortcut to

computing just the n-th digit of π. Thus, it came as no small surprise when such an
algorithm was recently discovered [4]. In particular, this simple scheme allows one to
compute the n-th hexadecimal (or binary) digit of π without computing any of the first
n − 1 digits, without using multiple-precision arithmetic software, and at the expense of
very little computer memory. The one millionth hex digit of π can be computed in this
manner on a current-generation personal computer in only about 60 seconds run time.

This scheme is based on the following new formula, which was discovered in 1996 using
PSLQ:

π =
∞∑

k=0

1

16k

[
4

8k + 1
− 2

8k + 4
− 1

8k + 5
− 1

8k + 6

]
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Similar base-2 formulas are given in [4, 14] for some other mathematical constants. In
[13] some base-3 formulas were obtained, including the identity

π2 =
2

27

∞∑
k=0

1

729k

[
243

(12k + 1)2
− 405

(12k + 2)2
− 81

(12k + 4)2
− 27

(12k + 5)2

− 72

(12k + 6)2
− 9

(12k + 7)2
− 9

(12k + 8)2
− 5

(12k + 10)2
+

1

(12k + 11)2

]

5. Identification of Multiple Sum Constants
A large number of results were recently found using PSLQ in the course of research

on multiple sums, such as those shown in Table 1. After computing the numerical values
of these constants, a PSLQ program was used to determine if a given constant satisfied
an identity of a conjectured form. These efforts produced numerous empirical evaluations
and suggested general results [3]. Eventually, elegant proofs were found for many of these
specific and general results [6, 7]. Three examples of PSLQ results that were subsequently
proven are given in Table 1. In the table, ζ(t) =

∑∞
j=1 j−t is the Riemann zeta function,

and Lin(x) =
∑∞

j=1 xjj−n denotes the polylogarithm function.

∑∞
k=1

(
1 + 1

2
+ · · · + 1

k

)2
(k + 1)−4 = 37

22680
π6 − ζ2(3)∑∞

k=1

(
1 + 1

2
+ · · · + 1

k

)3
(k + 1)−6 = ζ3(3) + 197

24
ζ(9) + 1

2
π2ζ(7)

− 11
120

π4ζ(5) − 37
7560

π6ζ(3)∑∞
k=1

(
1 − 1

2
+ · · · + (−1)k+1 1

k

)2
(k + 1)−3 = 4 Li5(

1
2
) − 1

30
ln5(2) − 17

32
ζ(5)

− 11
720

π4 ln(2) + 7
4
ζ(3) ln2(2) + 1

18
π2 ln3(2) − 1

8
π2ζ(3)

Table 1: Some multiple sum identities found by PSLQ

In another application to mathematical number theory, PSLQ has been used to inves-
tigate sums of the form

S(k) :=
∑
n>0

1

nk
(

2n
n

)
For small k, these constants satisfy simple identities, such as S(4) = 17π4/3240. Thus
researchers have sought generalizations of these formulas for k > 4. As a result of PSLQ
computations, the constants {S(k)|k = 5 . . . 20} have been evaluated in terms of multiple
zeta values [8], which are defined by

ζ(s1, s2, · · · , sr) =
∑

k1>k2>···>kr>0

1

ks1
1 ks2

2 · · · ksr
r

and multiple Clausen values [10] of the form

M(a, b) :=
∑

n1>n2>...>nb>0

sin(n1π/3)

na
1

b∏
j=1

1

nj
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A sample evaluation is

S(9) = π
[
2M(7, 1) +

8

3
M(5, 3) +

8

9
ζ(2)M(5, 1)

]
− 13921

216
ζ(9)

+
6211

486
ζ(7)ζ(2) +

8101

648
ζ(6)ζ(3) +

331

18
ζ(5)ζ(4) − 8

9
ζ3(3)

The evaluation of S(20) is an integer relation problem with n = 118, requiring 5000 digit
arithmetic. The full solution is given in [5].

6. Connections to Quantum Field Theory
In a surprising recent development, Broadhurst has found, using PSLQ, that there is an

intimate connection between these multiple sums and constants resulting from evaluation
of Feynman diagrams in quantum field theory [11, 12]. In particular, the renormalization
procedure (which removes infinities from the perturbation expansion) involves multiple
zeta values. Broadhurst used PSLQ to find formulas and identities involving these con-
stants. As before, a fruitful theory emerged, including a large number of both specific
and general results [8, 9].

More generally, one may define Euler sums by [8]

ζ

(
s1, s2 · · · sr

σ1, σ2 · · · σr

)
:=

∑
k1>k2>···>kr>0

σk1
1

ks1
1

σk2
2

ks2
2

· · · σkr
r

ksr
r

where σj = ±1 are signs and sj > 0 are integers. When all the signs are positive, one
has a multiple zeta value. Constants with alternating signs appear in problems such as
computation of the magnetic moment of the electron.

Broadhurst had conjectured that the dimension of the space of Euler sums with weight
w :=

∑
j sj is the Fibonacci number Fw+1 = Fw + Fw−1, with F1 = F2 = 1. Complete

reductions of all Euler sums to a basis of size Fw+1 have now been obtained with PSLQ at
weights w ≤ 9. At weights w = 10 and w = 11 the conjecture has been stringently tested
by application of PSLQ in more than 600 cases. At weight w = 11 such tests involve
solving integer relations of size n = F12 + 1 = 145 [5].

Some recent quantum field theory results are even more remarkable. Broadhurst has
now shown [13], using PSLQ, that in each of ten cases with unit or zero mass, the finite
part the scalar 3-loop tetrahedral vacuum Feynman diagram reduces to 4-letter “words”
that represent iterated integrals in an alphabet of 7 “letters” comprising the one-forms
Ω := dx/x and ωk := dx/(λ−k −x), where λ := (1+

√−3)/2 is the primitive sixth root of
unity, and k runs from 0 to 5. A 4-letter word is a 4-dimensional iterated integral, such
as

U := ζ(Ω2ω3ω0) =
∫ 1

0

dx1

x1

∫ x1

0

dx2

x2

∫ x2

0

dx3

(−1 − x3)

∫ x3

0

dx4

(1 − x4)
=

∑
j>k>0

(−1)j+k

j3k

There are 74 four-letter words. Only two of these are primitive terms occurring in the
3-loop Feynman diagrams: U , above, and

V := Real[ζ(Ω2ω3ω1)] =
∑

j>k>0

(−1)j cos(2πk/3)

j3k
.
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The remaining terms in the diagrams reduce to products of constants found in Feynman
diagrams with fewer loops. These ten cases as shown in Figure 1. In these diagrams,
dots indicate particles with nonzero rest mass. The formulas that have been found,
using PSLQ, for the corresponding constants are given in Table 2. The constant C =∑

k>0 sin(πk/3)/k2.
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Figure 1: The ten tetrahedral cases

V1 = 6ζ(3) + 3ζ(4)

V2A = 6ζ(3) − 5ζ(4)

V2N = 6ζ(3) − 13
2
ζ(4) − 8U

V3T = 6ζ(3) − 9ζ(4)

V3S = 6ζ(3) − 11
2
ζ(4) − 4C2

V3L = 6ζ(3) − 15
4
ζ(4) − 6C2

V4A = 6ζ(3) − 77
12

ζ(4) − 6C2

V4N = 6ζ(3) − 14ζ(4) − 16U

V5 = 6ζ(3) − 469
27

ζ(4) + 8
3
C2 − 16V

V6 = 6ζ(3) − 13ζ(4) − 8U − 4C2

Table 2: Formulas found by PSLQ for the ten cases of Figure 1

7. Conclusion
For many years, researchers have dreamed of a facility that permits one to recognize

a numeric constant in terms of the mathematical formula that it satisfies. With the
advent of efficient integer relation detection algorithms, that time has arrived. Using
these algorithms, researchers have discovered numerous new facts of mathematics and
physics, and these discoveries have in turn led to valuable new insights. This process,
which is often termed “experimental mathematics”, namely the utilization of modern
computer technology in the discovery of new mathematical principles, is expected to play
a much wider role in both pure and applied mathematics during the next century.
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