
The two-level multipair PSLQ algorithm

David H. Bailey∗

May 2, 2024

Abstract

Given a vector of real or complex numbers {x1, x2, · · · , xn}, an integer
relation algorithm is a computational scheme to find n integers ak, if they
exist, such that a1x1 +a2x2 + · · ·+anxn = 0 (to within available numeric
precision). Two widely used schemes are the PSLQ and the multipair
PSLQ algorithms, the latter of which is moderately well-suited for paral-
lel processing, and, as a bonus, is somewhat more efficient in terms of run
time and usage of numeric precision than the original PSLQ algorithm.
The computational efficiency of these algorithms can be dramatically in-
creased by employing “multilevel” implementations, which perform most
iterations in ordinary double precision, updating mulitprecision arrays
only as needed. This paper presents full details of an efficient two-level
multipair PSLQ implementation as a guide to future researchers.

1 Introduction

Let {x1, x2, · · · , xn} be a vector of real or complex numbers. An integer relation
algorithm is a computational scheme to find n integers ak, if they exist, such that
a1x1 +a2x2 + · · ·+anxn = 0 (to within available numeric precision). Numerous
applications have been identified for integer relation algorithms, ranging from
finding the minimal polynomial of some computed algebraic number to the
identification of definite integrals that arise in mathematical physics [3, 1, 2].
Such computations usually require extremely high numeric precision, typically
a few hundred digits but in some cases up to 100,000 digits.

One typical application of an integer relation algorithm is to recover the
minimal polynomial of a degree-m algebraic number α, whose value can be
computed to high precision. The procedure is to compute the (m + 1)-long
vector x = (1, α, α2, · · · , αm) and apply an integer relation algorithm. If an
integer relation (ai) is found for x that holds to the level of precision being
used, then the resulting vector of integers may be the coefficients of an integer
polynomial of degree m satisfied by α, subject to further verification.

As an illustration, suppose one suspects that the real constant α, whose nu-
merical value to 40 digits is 2.1195912698291751313298483349346871106280 . . .,
is an algebraic number of degree eight. After computing the vector (1, α, α2, · · · ,
α8) and applying an integer relation algorithm, the relation (1,−216, 860,−744,
454,−744, 860,−216, 1) is produced, so that α appears to satisfy the polynomial
1− 216α+ 860α2 − 744α3 + 454α4 − 744α5 + 860α6 − 216α7 + α8 = 0.

∗Lawrence Berkeley National Laboratory (retired), Berkeley, CA, USA, dhbailey@lbl.gov.

1

Two widely used schemes are the PSLQ algorithm, due to Helaman Ferguson
[4], and the multipair PSLQ algorithm, the latter of which is moderately well-
suited for parallel processing, and, as a bonus, is somewhat more efficient in
terms of run time and numeric precision than the original PSLQ algorithm [3].

The paper [3] briefly described “multilevel” implementations of both stan-
dard PSLQ and multipair PSLQ. These schemes dramatically reduce run times
(by as much as 100X) by performing most iterations in ordinary double precision,
and updating multiprecision arrays only as needed. However, orchestrating an
efficient multilevel implementation is a significant challenge. Accordingly, this
paper presents full details of an efficient two-level multipair PSLQ implementa-
tion to guide future researchers.

It should be added that the present author has also implemented a three-
level version of the multipair PSLQ algorithm, employing ordinary double preci-
sion, medium precision (typically 200–5,000 digits), and full precision (typically
5,000–100,000 digits). The three-level scheme is significantly more complicated
than the two-level scheme, but on large problems typically saves up to 30% in
run time. Details of the three-level scheme will not be given here; please contact
the present author for details and code.

2 The multipair PSLQ algorithm

As mentioned above, the original PSLQ algorithm is not well suited for modern
parallel computer systems, so the “multipair PSLQ” algorithm was developed
in [3]. It greatly reduces the number of sequential iterations that must be
performed, and exhibits moderately high concurrency in the major steps of
individual iterations. As a plus, it is somewhat more efficient with run time and
numerical precision than the original PSLQ.

A full statement of the multipair PSLQ algorithm is as follows, taken from
[3] (note that the online version and the statement below correct an error in the
original published version). Here γ =

√
4/3 as before, and β = 0.4.

One-level multipair PSLQ algorithm:

Initialize:

1. For j := 1 to n: for i := 1 to n: if i = j then set Aij := 1 and Bij := 1
else set Aij := 0 and Bij := 0; endfor; endfor.

2. For k := 1 to n: set sk :=
√∑n

j=k x
2
j ; endfor; set t = 1/s1; for k := 1 to

n: set yk := txk; sk := tsk; endfor.

3. Initial H: For j := 1 to n − 1: for i := 1 to j − 1: set Hij := 0; endfor;
set Hjj := sj+1/sj ; for i := j + 1 to n: set Hij := −yiyj/(sjsj+1); endfor;
endfor.

Iteration: Repeat the following steps until precision has been exhausted or a
relation has been detected.

1. Sort the entries of the (n − 1)-long vector {γi|Hii|} in decreasing order,
producing the sort indices.

2. Beginning at the sort index m1 corresponding to the largest γi|Hii|, select
pairs of indices (mi,mi + 1), where mi is the sort index. If at any step

2

either mi or mi + 1 has already been selected, pass to the next index in
the list. Continue until either βn pairs have been selected, or the list
is exhausted. Let p denote the number of pairs actually selected in this
manner.

3. For i := 1 to p, exchange the entries of y indexed mi and mi + 1, and the
corresponding rows of A, B and H; endfor.

4. Remove corners on H diagonal: For j := 1 to p: if mj ≤ n − 2 then set

t0 :=
√
H2
mj ,mj

+H2
mj ,mj+1, t1 := Hmj ,mj

/t0 and t2 := Hmj ,mj+1/t0; for

i := mj to n: set t3 := Hi,mj ; t4 := Hi,mj+1; Hi,mj := t1t3 + t2t4; and
Hi,mj+1 := −t2t3 + t1t4; endfor; endif; endfor.

5. Reduce H: For i := 2 to n: for j := 1 to n− i+ 1: set l := i+ j − 1; for
k := j+1 to l−1: set Hlj := Hlj−TlkHkj ; endfor; set Tlj := nint(Hlj/Hjj)
and Hlj := Hlj−TljHjj ; endfor; endfor. [Note that the n× (n−1) integer
array T is set before it is used.]

6. Update y: For j := 1 to n − 1: for i := j + 1 to n: set yj := yj + Tijyi;
endfor; endfor.

7. Update A and B: For k := 1 to n: for j := 1 to n− 1: for i := j + 1 to n:
set Aik := Aik − TijAjk and Bjk := Bjk + TijBik; endfor; endfor; endfor.

8. Norm bound: Compute M := 1/maxj |Hjj |. Then there can exist no
relation vector whose Euclidean norm is less than M .

9. Termination test: If the largest entry of A exceeds the level of numeric
precision used, then precision is exhausted. If the smallest entry of the y
vector is less than the detection epsilon, a relation has been detected and
is given in the corresponding row of B.

It should be added that for a basic implementation with just one level of
precision, it is not necessary to compute the A matrix, which is the inverse of
the B matrix. However, in two- or three-level implementations, it is necessary to
compute the A matrix, as we shall see below. Along this line, it is not necessary
to compute the norm bound at every iteration; typically this is computed only
periodically for informational purposes.

3 LQ decomposition

Although a single-level implementation of multipair PSLQ does not require an
LQ (lower-quadrature) matrix decomposition, it is required for a two- or three-
level implementation. Thus before continuing we present the LQ decomposition
algorithm:

LQ decomposition of input (and output) n×m matrix H:

For l = 1 to min(m,n): if l = m then go to Label A.

Compute Householder transformation for column l: Set N :=
√∑m−l

i=0 Hl,l+i; if

N = 0 then go to Label A; else if Hl,l 6= 0 then set the sign of N to be the same
as the sign of Hl,l; for i = 0 to m− l set Hl,l+i := Hl,l+i/N ; set Hl,l := 1 +Hl,l.

3

Apply the transformation to remaining H matrix: For j = l + 1 to n; set

t = −
(∑m−l

i=0 Hl,l+iHj,l+i

)
/Hl,l; for i = 0 to m− l set Hj,l+i := Hj,l+i+ tHl,l+i

end for; end for.

Set Hl,l := −N . Label A. End for.

4 Two-level implementation of multipair PSLQ

As mentioned above, the run-time performance of PSLQ or multipair PSLQ
can be dramatically accelerated (up to 100X) by employing two or even three
levels of precision, performing most iterations of the algorithm in ordinary IEEE
double precision arithmetic.

The key challenge here is to perform as many iterations as possible in double
precision, yet to stop the current set of iterations and update the multiprecision
arrays before any entry of the double precision A and B arrays exceeds 253 ≈
9.007× 1015 in absolute value (most whole numbers larger than this are not be
representable exactly as IEEE double precision floats). If a larger value arises
in A or B, then the integrity of the algorithm has been lost. In practice, it is
necessary to set this limit at 252 ≈ 4.503 × 1015, because it is possible for an
intermediate value in the expression computing an entry of A or B to exceed
253, even if the resulting value stored in A or B does not exceed 253.

The present author has found that a fairly efficient rule is to stop double
precision iterations when the maximum absolute value of A or B exceeds 1013, or
when the smallest absolute value of the Y vector is less than 10−14. This works
satisfactorily in most cases, but in large problems occasionally an A or B value
exceeding 252 may still arise. Thus a reliable two-level implementation must
include code to detect and handle these precision failures: In most such cases,
it is sufficient to revert to double precision arrays saved at the beginning of the
current iteration, update the multiprecision arrays, reset A and B to identity
matrices, and then continue with double precision iterations; but occasionally
it is necessary to perform some iterations with multiprecision arithmetic before
continuing in double precision. Full details are given in algorithm below.

An alternative to the test checking whether the maximum absolute value of
the double precision A or B matrices exceeds 252 is to utilize the IEEE ARITH-
METIC module available in several compiler systems, including, for example,
the gcc/gfortran compilers. This allows one to test if the flag IEEE INEXACT
has been set during updates of the double precision A and B arrays. If true,
then a precision failure has occurred and must be dealt with as described above.

Here is a detailed statement of the author’s implementation (some relatively
minor steps, e.g., to control output, are not included here). Int denotes integer,
DP denotes double precision and MPR denotes multiprecision real. The variable
names below are the same as in the author’s code, which is available as part of
the MPFUN2020 software package at
https://www.davidhbailey.com/dhbsoftware.

4

https://www.davidhbailey.com/dhbsoftware

PSLQM2 (two-level multipair PSLQ):

Input arguments and parameters:
N Int Length of input vector X and output relation vector R.
NDP Int Precision level in digits.
NWDS Int Precision level in words (set by a formula based on NDP).
NDR Int log10 of the min acceptable dynamic range of Y vector at

detection; default = 30. A smaller range is deemed unreliable.
NRB Int log10 of max size (Euclidean norm) of acceptable relation;

default = 200.
NEP Int log10 of full precision epsilon; default = 30−NDP ; for large

problems replace 30 by 50 or 60.
X MPR N -long input multiprecision vector.
IQ Int Output flag: 0 (unsuccessful) or 1 (successful).
R MPR N -long output integer relation vector, if successful, else zeroes.
IPM Int Iteration check interval; default = 10.
NSQ Int Second dimension of DSY Q and SY Q; default = 8.
DEPS DP Double precision epsilon; default = 10−14.
DREP DP Dynamic range epsilon; default = 10−10.

Integer variables:
IT, ITS, IMQ, IZD, IZM

Double precision arrays and variables (with dimensions):
DA(N,N), DB(N,N), DH(N,N), DY SQ(N,NSQ), DY (N)

Multiprecision real arrays and variables (with dimensions):
B(N,N), H(N,N), SY Q(N,NSQ), Y (N), EPS, T

Algorithm:

1. Initialize MPR arrays:

a. Set EPS = 10NEP .

b. Set B to an N ×N identity matrix.

c. Compute initial H matrix as given in multipair PSLQ algorithm above.

d. Set SY Q array to zeroes.

e. Set IZD, IZM, IMQ, IT and ITS to zero.

2. Check if min/max absolute value of Y < DREP . This is often true for
the first few tens of iterations. If true, go to Step 7 below.

3. Initialize DP arrays:

a. Set T = max absolute value of Y ; set DY = Y/T , rounded to DP.

b. Set T = max absolute value of H; set DH = H/T , rounded to DP.

c. Set DA and DB to identity matrices.

d. Set DY SQ array to zeroes.

4. Perform an LQ decomposition on DH using DP arithmetic.

5. Perform one multipair PSLQ iteration using DP arithmetic:

a. Increment iteration count: IT := IT + 1; set IZD = 0.

b. Save the input DA,DB,DH and DY arrays.

5

c. Follow the steps in multipair PSLQ algorithm above to update DY,DA,
DB and DH; however, if flag IMQ = 1 from a previous iteration, only
select one pair of entries (i.e., set p = 1 in Steps 2, 3 and 4 in the
multipair PSLQ algorithm), then set IMQ = 0. It is not necessary to
compute the norm bound in the DP iterations.

d. If the min absolute value of DY < DEPS, then set IZD = 1. If the
max absolute value of DA or DB exceeds 1013, but less than 252, then
set IZD = 1. If the max absolute value of DA or DB exceeds 252

(precision failure), then set IZD = 2 and restore the DA,DB,DH
and DY arrays saved above in Step 5b.

e. Compare the DY vector with the DY vectors of recent iterations saved
in array DY SQ; if a match is found, set flag IMQ = 1, which instructs
the next iteration to be performed using only one pair of indices in the
multipair scheme (in practice, this occurs only very rarely).

f. Save DY vector in row K of DY SQ, where K = 1 + mod(IT,NSQ)
(i.e., DY vectors are stored a circular sequence in the DY SQ array).

6. Check flags and, if needed, update MPR arrays from DP arrays:

a. If IZD = 0, go to Step 5 (continue DP iterations). If IZD = 2,
but IT > ITS + 1 (i.e., if the current iteration is more than one plus
the previous iteration when a MPR update was performed), then set
IZD = 1, so that after an MPR update, regular DP iterations can
continue. But if IT = ITS + 1 (i.e., an MPR update was performed
on the previous iteration), then leave IZD = 2.

b. Update MPR arrays from DP arrays: Set Y := DB × Y (matrix mul-
tiplication), then find the min absolute value of the updated Y . Set
B := DB×B (matrix multiplication), then find max absolute value of
updated B. Set H := DA×H (matrix multiplication). Set ITS = IT .

c. The max norm bound may optionally be computed here, as described
in the multipair PSLQ algorithm above, and output, along with the
current min and max of Y and other data for informational purposes.

d. If the min absolute value of Y is less than EPS× max absolute value
of B (tentative detection), then set IZM = 1; else if the min absolute
value of Y is less than EPS× 272× max absolute value of B (precision
exhausted), then set IZM = 2; else set IZM = 0.

e. Test output flag: If IZM = 0, then if IZD = 2, go to Step 7 (start
MPR iterations), else go to Step 2 (start DP iterations); else if IZM =
1, go to Step 9 (exit); else if IZM = 2, go to Step 9 (exit).

7. Perform an LQ decomposition on H using MPR arithmetic.

8. Perform one multipair PSLQ iteration using MPR arithmetic:

a. Increment iteration count: IT := IT + 1; set IZM = 0.

b. Perform one iteration of the multipair PSLQ algorithm using MPR
arithmetic, as described above (except no need to compute norm bound).

c. If the min absolute value of Y is less than EPS× max absolute value
of B (tentative detection), then set IZM = 1; else if the min absolute
value of Y is less than EPS× 272× max absolute value of B (precision
exhausted), then set IZM = 2.

6

d. Test output flag: If IZM = 0, then periodically (every IPM iterations
since the last MPR update) check if the min/max dynamic range of
Y < DREP ; if true, go to Step 8 (continue MPR iterations); else go
to Step 3 (start DP iterations); else if IZM = 1, go to Step 9 (exit);
else if IZM = 2, go to Step 9 (exit).

9. Exit:

a. If IZM = 1 find the index of Y with the min absolute value; set R =
row of B corresponding to that index. If the Euclidean norm of the
relation is less than 10NRB , and the dynamic range of the Y vector
is at least 10NDR, set IQ = 1 (success) and exit; otherwise set R =
zeroes and set IQ = 0 (failure), then exit.

b. If IZM = 2, then set R = zeroes and set IQ = 0 (failure), then exit.

5 Sample test results

The algorithm above has been tested on several problems, including these two:

1. Recover the degree-56 minimal polynomial of the algebraic number α =
31/7 − 21/8 = 0.079423080093429 This run employed 750-digit arith-
metic and ran 3.4 seconds on the author’s Apple Mac Studio system, with
the detection at iteration 2,893. The resulting polynomial is:

0 = 6433− 10752α− 330624α2 − 4523904α3 − 26535600α4

− 52744608α5 − 17513496α6 − 17496α7 + 448α8 − 3806208α9

+ 337256640α10 − 3329569152α11 + 3802034376α12 − 217020384α13

+ 20412α14 − 672α16 − 25366656α17 − 2748602304α18

− 7518801024α19 − 358251012α20 − 13608α21 + 560α24 − 25826304α25

+ 944957664α26 − 132239520α27 + 5670α28 − 280α32 − 5146848α33

− 11195352α34 − 1512α35 + 84α40 − 143808α41 + 252α42 − 14α48

− 24α49 + α56

2. Recover the degree-64 minimal polynomial of the algebraic number α =
exp(8πφ2(x, y) = 1767.3603891331088833 . . ., where

φ2(x, y) =
1

π2

∑
m,n odd

cos(mπx) sin(nπy)

m2 + n2
,

in the specific case x = y = 1/17. The φ2(x, y) function can be efficiently
computed as [2]:

φ2(x, y) =
1

2π
log

∣∣∣∣θ2(z, q)θ4(z, q)

θ1(z, q)θ3(z, q)

∣∣∣∣ ,
where q = e−π and z = π/2·(y+ix). The theta functions can be computed

7

by these rapidly convergent formulas:

θ1(z, q) = 2

∞∑
k=1

(−1)k−1q(2k−1)
2/4 sin((2k − 1)z),

θ2(z, q) = 2

∞∑
k=1

q(2k−1)
2/4 cos((2k − 1)z),

θ3(z, q) = 1 + 2

∞∑
k=1

qk
2

cos(2kz),

θ4(z, q) = 1 + 2

∞∑
k=1

(−1)kqk
2

cos(2kz). (1)

This run employed 2,500-digit arithmetic and ran 52.5 seconds, with the
detection at iteration 9,495. The resulting polynomial is:

0 = 1 + 6912α− 1023008α2 + 535196800α3 + 7742027760α4 − 2451239864832α5

+ 140264665723552α6 − 2494265652888704α7 + 18453445522215032α8

+ 21614293158955264α9 − 1840469978381611680α10 + 26560170568288794240α11

− 219265475764921569840α12 + 1143759465759937297408α13

− 4563932639248948435424α14 + 21048406812137688311168α15

− 123756069205191278016740α16 + 662708878348907477250816α17

− 2671051287612630032421280α18 + 7693234584556635821267584α19

− 14862548097474240887146768α20 + 11985439092809681992002048α21

+ 44351668349396581870408736α22 − 259625664937972467300807296α23

+ 803186115899676703948238664α24 − 1789602095389051533149533952α25

+ 3055552833334608777606289376α26 − 4156271487999506323835036544α27

+ 4903963676671959157531751248α28 − 6019517253583536219231909888α29

+ 8780067564346216307831284640α30 − 13334548483907481046238812288α31

+ 17362857489419448630866293318α32 − 17345855629600599241800189696α33

+ 11966489230110362129440701856α34 − 3898119322387426442055756416α35

− 2451983939727870545406928048α36 + 4743446591055878746050587136α37

− 3881818694457698660972764704α38 + 2101492937309911776817793664α39

− 830074840813669608610951352α40 + 269366792757186303037874944α41

− 96596567511508184274883040α42 + 46311532722057913438161792α43

− 22155672572673873192657168α44 + 8153783303351403692882944α45

− 2079969173966458011379616α46 + 331427117746835861477504α47

− 18856552838875733014756α48 − 7235322856083561662208α49

+ 3292609205079608858656α50 − 738833647673944491136α51

+ 76552613117134517712α52 − 1424154241008650752α53 + 342676113911934816α54

− 89825284727190400α55 + 3891480748650616α56 − 154854254425344α57

− 3704022727520α58 + 404224147840α59 − 125943824α60 + 62013440α61

− 670240α62 − 1408α63 + α64

8

References

[1] David H. Bailey and Jonathan M. Borwein, “Experimental mathematics:
Examples, methods and implications,” Notices of the American
Mathematical Society, vol. 52, no. 5 (May 2005), 502–514, available at
https://www.ams.org/notices/200505/fea-borwein.pdf.

[2] David H. Bailey, Jonathan M. Borwein, Jason Kimberley and Watson
Ladd, “Computer discovery and analysis of large Poisson polynomials,”
Experimental Mathematics, 27 Aug 2016, vol. 26, 349–363, available at
https://www.davidhbailey.com/dhbpapers/poisson-res.pdf.

[3] David H. Bailey and David J. Broadhurst, “Parallel integer relation
detection: Techniques and applications,” Mathematics of Computation,
vol. 70, no. 236 (Oct 2000), 1719-1736, preprint draft available at
https://www.davidhbailey.com/dhbpapers/ppslq.pdf.

[4] Helaman R. P. Ferguson, David H. Bailey and Stephen Arno, “Analysis of
PSLQ, an integer relation finding algorithm,” Mathematics of
Computation, vol. 68, no. 225 (Jan 1999), 351–369, preprint draft
available at https://www.davidhbailey.com/dhbpapers/cpslq.pdf.

9

https://www.ams.org/notices/200505/fea-borwein.pdf
https://www.davidhbailey.com/dhbpapers/poisson-res.pdf
https://www.davidhbailey.com/dhbpapers/ppslq.pdf
https://www.davidhbailey.com/dhbpapers/cpslq.pdf

	Introduction
	The multipair PSLQ algorithm
	LQ decomposition
	Two-level implementation of multipair PSLQ
	Sample test results

