Proof checking software: A paradigm-changing development for

mathematical research
» Lean: Initially written by Leonardo de Moura at Microsoft Research; first released
in 2017; improved, community-supported version released in 2021.
> Isabelle: Originally written in 1986 by Lawrence Paulson; the current version is
from 2024. This was used by Thomas Hales to certify his proof of the Kepler
Conjecture in 2014.
» HOL Light: Originally written by John Harrison, drawing on work by several
others dating back to the 1980s.
These tools permit one to rigorously confirm all steps of a formal mathematical proof,
thus greatly facilitating collaborative mathematical research.
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Terence Tao on Al and proof checkers in mathematical research

“Now you can really collaborate with hundreds of people that you've never met before.
And you don't need to trust them, because they upload code and the Lean compiler
verifies it. You can do much larger-scale mathematics than we do normally. When |
formalized our most recent results with what is called the Polynomial Freiman-Ruzsa
(PFR) conjecture, [| was working with] more than 20 people. We had broken up the
proof in lots of little steps, and each person contributed a proof to one of these little
steps. And | didn't need to check line by line that the contributions were correct. | just
needed to sort of manage the whole thing and make sure everything was going in the
right direction. It was a different way of doing mathematics, a more modern way."

» C. Drosser, “Al will become mathematicians’ ‘co-pilot’,” Scientific American, 8 Jun 2024,
www.scientificamerican.com/article/ai-will-become-mathematicians-co-pilot/

> M. Wong, “We're entering uncharted territory for math,” Atlantic, 4 Oct 2024, https://www.
theatlantic.com/technology/archive/2024/10/terence-tao-ai-interview/680153/
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The PSLQ integer relation algorithm
Let (x,) be a given vector of real numbers. An integer relation algorithm either finds
integers (ap) such that

aixy+ao+--+apx, = 0

(to within the “epsilon” of the arithmetic being used), or else finds bounds within
which no relation can exist.

The “PSLQ" and “multipair PSLQ" algorithms of mathematician-sculptor Helaman
Ferguson are among the most widely used integer relation algorithms.

Integer relation detection requires very high precision (at least n x d digits, where d is
the size in digits of the largest ax), both in the input data and in the algorithm steps.
1. H. R. P. Ferguson, D. H. Bailey and S. Arno, "Analysis of PSLQ, an integer relation finding
algorithm,” Mathematics of Computation, vol. 68, no. 225 (Jan 1999), 351-369.

2. D. H. Bailey and D. J. Broadhurst, “Parallel integer relation detection: Techniques and
applications,” Mathematics of Computation, vol. 70, no. 236 (Oct 2000), 1719-1736.

3/14



How to compute binary digits of log2 at an arbitrary starting position
Consider this well-known formula for log 2:

(o9
1
log?2 = E on = 0.101100010111001000010111111101111101000111001111011... .»
n
n=1

Note that the binary digits of log2 beginning after position d can be written as
frac(29 log 2), where frac denotes fractional part. Thus we can write:

d d—n 00 d—n
2 2
frac(29 log2) = frac | Y _ f >
rac(29 log 2) rac( p )—i— rac( - )

n=1 n=d-+1
d d—n 00 d—n
2 mod n 2
—f S S
rac( p )—i—frac( - ),
n=1 n=d-+1

where we have inserted mod n since were are only interested in the fractional part when
divided by n. The numerator 29" mod n can be calculated very rapidly using the
binary algorithm for exponentiation. This can be done using quad-precision arithmetic.

Is there a similar formula and computational scheme for 77 None was known in 1996. 1,



The BBP formula for =

In 1996, a PSLQ-like computer program discovered this new formula for 7:

i 1 < 4 2 1 1 >
= — — — — .
n2016" 8k+1 8k+4 8k+5 8k+6

This formula permits one to compute binary or hexadecimal digits of m beginning at an
arbitrary starting position, without needing to computing any of the preceding digits.

This is likely the first instance of a computer program discovering a new formula for .

Other BBP-type formulas, mostly discovered using PSLQ, are now known for
numerous other mathematical constants.

» D. H. Bailey, P. B. Borwein and S. Plouffe, “On the rapid computation of various polylogarithmic
constants,” Mathematics of Computation, vol. 66 (Apr 1997), 903-913.
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Some other BBP-type formulas found using PSLQ
2 216 72 _ 54 9

7T:82064k(6k+1) 6k + 272  (6k13) (6k+4)2+(6k+5)2>

2 3 Z 243 B 405 B 81 B 27
27 pars 720k \ (12k +1)2  (12k+2)2  (12k+4)2  (27k +5)2
o 9 3 9 3 5 N 1
(12k +6)2  (12k+7)2 (12k+8)2  (12k+10)2 = (12k + 11)?
1 i": 1 (_6144 43008 24576 30720 1536
T 1792 212k \ (24k +1)3  (24k +2)3 = (24k +3)3 ' (24k +4)> (24k +5)3
3072 768 3072 2688 192 1536
(24k +6)3 ' (24k+7)3 (24k+9)® (24k+10)3 (24k+11)3 (24k +12)3
9% o612 38 24 N 48 3 12
(24k +13)3  (24k +14)3  (24k +15)3 ' (24k +17)3 = (24k +18)3  (24k +19)3
L 120 48 3 42 N 3
(24k +20)3 ' (24k 421)3  (24k +22)3 ' (24k +23)3

» D. H. Bailey, J. M. Borwein, A. Mattingly and G. Wightwick, “The computation of previously

inaccessible digits of Pi> and Catalan’s constant,” Notices of the AMS, vol. 60 (2013), 844-854.
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Using PSLQ to find the minimal polynomial of an algebraic number

Example: The following constant is suspected to be a degree-30 algebraic number:
o = 1.232688913061443445331472869611255647068988824547930576057634684778 . . .

What is its minimal polynomial?
Method: Compute the vector (1, ,a?,--- ,a30) to at least 250-digit arithmetic, then

input this vector to PSLQ.

Result:

0 = 697 — 1440 — 2052002 — 98280a° — 1020600* — 1458a° + 80a® — 439200’
+ 5383800 — 3364200° + 1215010 — 80a!'? — 561603 — 135540a'* — 540a!°
+ 4008 — 73800 + 1350%° — 1002* — 1802 + 30
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The Poisson potential function

The Poisson potential function appears in mathematical physics and also in practical
applications such as sharpening iPhone images. A simple 2-D instance is:

¢2(X7y) = % Z

m,n odd

cos(mmx) cos(nmy)
m2 + n?

In a 2013 study, researchers numerically discovered and then proved the intriguing fact
that for rational x and v,

1
¢2(X>y) = ; : |ogﬂ(X,)/),
where ((x,y) is an algebraic number.

By computing high-precision numerical values of ¢2(x, y) for various specific rational x
and y, and applying the multipair PSLQ algorithm, we were able to produce the
explicit minimal polynomials in numerous specific cases.

» D. H. Bailey, J. M. Borwein, R. E. Crandall and J. Zucker, “Lattice sums arising from the Poisson
equation,” Journal of Physics A: Mathematical and Theoretical, vol. 46 (2013), 115201.
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Samples of minimal polynomials found by PSLQ

~N O O n

O 0

10

Minimal polynomial corresponding to x =y = 1/s:

14520 — 2602 — 1203 + o

1—28a + 602 — 28a3 + o*

—1 — 196a + 1302a% — 1475602 + 156730 + 421680° — 11191608 + 82264a”
—35231a8 + 1985202 — 2954019 — 308a!! + 7a!?

1 —88a + 92a2 — 87203 + 19900* — 872a° + 9208 — 88a7 + af

—1 — 534 + 1092302 — 34286403 + 23046840* — 7820712a° + 137290680°
—223215840" + 3977598608 — 444310440° 4+ 19899882010 + 35465760
—84580200'? + 400917603 — 2733480 + 121392a/°

—11385a!® — 342017 4 3018

1 —216a + 86002 — 74403 + 454a* — 7440° + 86008 — 216a” + of

What is the relationship between the denominator s and the degree of the polynomial?

Also, does the palindromic property for even s above extend to larger cases?
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192-degree minimal polynomial found by multipair PSLQ for x = y = 1/35

This polynomial has degree 192, with coefficients as large as 108%. This computation
required 18,000-digit floating-point arithmetic and 34 CPU-hours run time.

The case (x,y) = (1/37,1/37) required 51,000-digit floating-point arithmetic and 90
CPU-days (5.6 days on a 16-core parallel system).

These computations confirmed Kimberley's formula (see next slide) for
(x,y) =(1/s,1/s), for most s up to 52 and also for s = 60 and s = 64.
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Kimberley's formula for the degree of the minimal polynomial
Based on preliminary computational results, Jason Kimberley of the University of
Newcastle, Australia observed that the degree m(s) of the minimal polynomial
associated with the case x = y = 1/s appears to be given by the following:

Set m(2) = 1/2. Otherwise for primes p congruent to 1 mod 4, set m(p) = int?(p/2),
where int denotes greatest integer, and for primes p congruent to 3 mod 4, set
m(p) = int (p/2)(int (p/2) + 1). Then for any other positive integer s whose prime

factorization is s = py'p5? - - - pgr,

m(s) = 42T p2 ™ m(py).
i=1

Further research ultimately led to a proof of Kimberley's formula in 2016.

Much more extensive computations found a tentative modification of Kimberley's

formula for the more general case (x,y) = (p/s, q/s) for integers 1 < p < g < s/2.
» D. H. Bailey, J. M. Borwein, J. Kimberley and W. Ladd, “Computer discovery and analysis of

large Poisson polynomials,” Experimental Mathematics, 27 Aug 2016, vol. 26, 349-363. )1



December 2024: Results for the Poisson 1) function
The 2013 study also briefly mentioned the closely related function

Pa(x,y) = % >

m,n even

cos(mmx) cos(mny)
m? + n? '

As with ¢2(x,y), the authors found that when x and y are rational, then

1
zﬂ2(xvy) = ; ’ |Ogﬁ(X,y),
for algebraic B(x,y).
A handful of results were given in the 2013 study, but progress has been stymied by an

error in the formulas derived in that study for fast numerical evaluation. This has now
been corrected, permitting large-scale numerical explorations.

However, the computations and analysis for 12(x, y) are many times more challenging
than with ¢2(x,y). Some individual cases have required up to 160,000-digit
floating-point arithmetic and over 200 CPU-hours run time.
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Degree-36 minimal polynomial found for the case (x,y) = (1/13,1/13)

+1la

—102008900 a*
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—1 36 o
+254366151 59940543 o
—1835635719561759818191190195010167655727243690089160673300
+1. 4780491187097906: 450511 o'®

—5064396407665154813418840619774597239924756002045577036668076918794 o't
+119351474020211942432679618099379351018638670800! 1603921355167265630727 11 o*

—2244 7104 16808818137766158 ol

- 37 1075: 51271865626702148647920682745570450492 o1

-1 44 1746315677313494777509752153540 o'®

—11385 775801877241 1381295965034361390310766 o'

— 4434711 7 1767781 315 67317410404125141

—804291 781 4813340313503 495 o'®

T 7760924526076904351341045848120769124 7 137 4362 o'

— 9848697 7515875272579777; 241788144135117573940304 0™

—1960 07263 4798676439947 1513147370138079643245990858532945372205916 o>

4930991878 1437557 1765483651912350877087306889144827987050001 o

- 7057 10578824 8911507 7 o

+35417729396764306114176293929528437318517945311027155476423311084518888515385368438403158935694752015480023 o
455857167477163888' 686577890657 172813358665411435964 o>

+881 483352713 713168 7674287372069651847488830730500638623572177021368148034789 ox®®

+16670738003069103451588809770087989389245830144911912162421547687133703545025155594912685216701709587122038 a?l
—704710382216061226800533124363494579736487582187308414415772397548018470271791769799111032904540109122 o*®

+ 31 0558681613927 109677 a®
+685801375051471321 139567571 1216 6789 o
—24285212219813436632015043 784648291 685427372653242794182945316036 o™
—15093718199896137194\)/1: 7 //1937 4 1117 o®

—967710126182231 7943516 o

—287621740841771257846 15045605304469197998473823997 a
+34626289697017167900469550986 o
+1a®

13/14



Initial results for the Poisson v function

From computations so far, it appears that Kimberley's rule also holds for polynomials
associated with 12(p/s, q/s), except that for even s, the polynomial degree is usually
half the degree of the corresponding ¢2(p/s, q/s) polynomial.

None of these results would be possible without the emergence of very powerful
21st-century computer hardware and software.

As computer technology continues to advance, what new types of mathematical results
will be discovered? Will an Al make the next set of discoveries?
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