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Polynomials arising from the Poisson potential function
The Poisson potential function appears in numerous applied math contexts, ranging
from mathematical physics to sharpening iPhone images. A simple 2-D instance is:

Z cos(mmx) cos(nmy)
m2 + n?

¢2(X7y) = %

m,n odd

A 2013 study numerically discovered and then proved the intriguing fact that when x
and y are rational, then ¢,(x, y) satisfies

1
¢2(X’y) = ; |0gﬁ(X,y)
where [3(x, y) is algebraic, i.e., the root of an integer polynomial of some degree m.

By computing high-precision numerical values of ¢2(x,y) for various specific rational x
and y, and applying variants of the PSLQ program, we were able to produce the
explicit minimal polynomials for o in several simple specific cases.

» D. H. Bailey, J. M. Borwein, R. E. Crandall and J. Zucker, “Lattice sums arising from the Poisson
equation.” Journal of Phvsics A: Mathematical and Theoretical vol. 46 (2013). 115201. 2/18



Key breakthrough: Borwein's fast algorithm to compute ¢»(x, y)
The original formula for ¢»(x,y) converges much too slowly for numerical evaluation.
But this formula, found by Jonathan Borwein (deceased 2016), is remarkably efficient:

1 92(2 q)04(2 q)
¢ (X )/) 01(2 q)93(z q)

where g = €77 and z = F(y + ix). Note that these series converge very rapidly:

u(z,q) =2 3 (-1 g/ in((2k — 1)2),

ba(z,q) =2 g2V % cos((2k — 1)2),

k=1
03(z,q) =1+2 Z qu cos(2kz),
k 1
O4( zq—l—i-ZZ cos2kz)
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The PSLQ integer relation algorithm
Let X = (xx) be an (m + 1)-long real or complex vector. An integer relation algorithm
finds a nontrivial integer vector A = (ax) such that

aoxo +aix1+ -+ amxm = 0.

» The PSLQ algorithm and the multipair PSLQ algorithm are commonly used for
integer relation detection. Variants of the LLL algorithm can also be used.

> Integer relation detection requires very high precision floating-point arithmetic:
at least (m+ 1) - maxy log;, |ak| digits (typically hundreds or thousands of digits),
both in the input data and the algorithm, or else the true relation will be lost in a
sea of numerical artifacts.

» Fast variations of PSLQ and multipair PSLQ utilize two, three or even four levels
of precision, doing as much computation as possible with only double precision,
and switching to higher levels only when needed.

» D. H. Bailey and D. J. Broadhurst, “Parallel integer relation detection: Techniques and
applications,” Mathematics of Computation, vol. 70, no. 236 (Oct 2000), 1719-1736.
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Numerically finding minimal polynomials using PSLQ
Integer relation algorithms can be used to recognize a computed numerical value as the
root of an integer polynomial of degree m.

Example: « is suspected to be an algebraic number of degree 8 or less:
o = 2.1195912698291751313298483349346871106280 . . .
What is its minimal polynomial?

Method: Compute the vector (1,a,a?,--- ,a8), then apply a variant of the PSLQ
algorithm. This produces the integer vector (1, —216, 860, — 744,454, —744,
860, —216, 1), so that « appears to satisfy the polynomial:

0=1—216a + 8600 — 74403 + 4540* — 7440° + 860a° — 216a” + o
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High-level computational algorithm

1.

2.

Given rationals x = p/s and y = q/s, select a conjectured minimal polynomial
degree m, precision levels P; and P, and other parameters for the run.

Calculate ¢o(x,y) to Pp-digit precision using Borwein's fast algorithm. When
done, calculate oo = exp(8m¢2(x,y)) and generate the (m + 1)-long vector

x = (1,a,a?,--- ,a™), to P,-digit precision. Note: the polynomials are simpler in
terms of a = (B(x, y))® = exp(87¢a(x, y)).

Apply a variant of the PSLQ algorithm to find an integer relation for x.

If no numerically significant relation is found, try again with a larger degree m or
higher precision. If a relation is found, employ Mathematica or Maple to ensure
that the polynomial is irreducible. Alternatively, rerun the problem with the
degree m reduced by one, to ensure that no numerically significant relation is
found with this smaller degree.
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2013: Some initial Poisson polynomial computations

S

Minimal polynomial corresponding to x =y =1/s:

5 1+452a—260%—12a3 + ot

6 1-—28a+6a°—28a3+a*

7 —1 — 196« + 13022 — 1475603 4 15673a* + 42168a°® — 11191600 + 822647
—35231a8 + 19852a° — 2954010 — 308al! 4 7a!?

8 1 — 88a + 9202 — 872a3 + 1990a* — 872a° + 920 — 88a” + af

9  —1-—534a + 1092302 — 3428640° + 2304684a* — 7820712a° + 137290680°
—22321584a" + 3977598608 — 444310440° + 19899882010 + 35465760
—84580200'? + 400917603 — 273348a* 4 121392015
—11385a10 — 342017 4 318

10 1 —216a + 860a? — 74403 + 454a* — 7440° + 86008 — 216a7 + o

Questions:
> Given s, what is the degree of the corresponding minimal polynomial?

| 4

Note that when s is even, the polynomial is palindromic, i.e., coefficients
ax = am—_k. Does this pattern hold for all even s?

These computations were very expensive and required very high precision.
Help! More powerful computational tools are required. 7/18



Kimberley's formula for the degree of the polynomial

Based on these preliminary results, Jason Kimberley of the University of Newcastle,
Australia observed that the degree m(s) of the minimal polynomial associated with the
case x =y = 1/s appears to be given by the following rule:

Set m(2) = 1/2. Otherwise for primes p congruent to 1 mod 4, set m(p) = int?(p/2),
where int denotes greatest integer, and for primes p congruent to 3 mod 4, set
m(p) = int (p/2)(int (p/2) + 1). Then for any other positive integer s whose prime

factorization is s = py'p5? - - - pgr,

m(s) = 42T p2 ™ m(py).
i=1

Questions:
» Does Kimberley's formula hold for larger s?
» Does the palindromic property hold for larger even s?

8/18



2016: Improvements to the Poisson polynomial program

—

. A new thread-safe arbitrary precision floating-point package.

N

. Multiprecision software may optionally utilize the MPFR / GMP packages for
even faster performance.
3. A new 3-level multipair PSLQ program, up to 5X faster:

a Double precision (appr. 15 digit accuracy).
b Medium multiprecision: varies from 100 digits to 1200 digits on Poisson problems.
¢ Full multiprecision: varies from 2,500 digits to 50,000 digits on Poisson problems.

4. Faster hardware: an 8-core MacPro system with Intel processor.

> D. H. Bailey, J. M. Borwein, J. Kimberley and W. Ladd, “Computer discovery and analysis of
large Poisson polynomials,” Experimental Mathematics, 27 Aug 2016, vol. 26, 349-363,
https://www.davidhbailey.com/dhbpapers/poisson-res.pdf.
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Degree-100 minimal polynomial found for the case x = y = 1/25
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Palindromic polynomials

From our results, in the case x = 1/s,y = 1/s where s is even, the resulting
polynomial is always palindromic (ax = ap,—). For instance, when s = 16,

pis(a) = 1 — 1376a" — 125600° — 35504960° + 812417200 — 169589984°
+ 13349649440° — 243077259840 + 238934926108a° — 10430271247040°
+ 2328675366384 — 3219896325280 + 4238551472456
— 102474144300480" + 28552105805904a " — 558328516879680/"°
+ 700202683090620'°
— 558328516879680/" + 285521058059040™° — 102474144300480"°
+ 42385514724560°° — 3219896325280 + 2328675366384
— 1043027124704 4 2389349261080 — 243077259840 + 13349649440
— 1695899840°" + 812417200 — 35504960 — 12560a°° — 13760°" + o

Nitya Mani, a student at Stanford University, pointed out that if « is a root of a
palindromic polynomial such as this, then a + 1/« is a root of a transformed

polynomial of half the degree. This fact has been used to greatly accelerate the
computation of Poisson polynomials when s is an even integer. 1118



2016: A proof of Kimberley formula for the case x =1/s,y =1/s
Some observations from the polynomials produced by the program:
» The algebraic number s is the largest real root of the associated polynomial.
» The polynomial has ¢(s) real roots, where ¢ is the Euler totient function.
» Roots are connected to a sequence of polynomials defined in a 2010 paper by
Savin and Quarfoot of the University of Utah, which was found by doing an

Google search for “387221579866," a coefficient of the polynomial for the case
(1/11,1/11).

These observations ultimately led to a proof, by Watson Ladd of U.C. Berkeley, of
Kimberley's formula and also the palindromic property, in the specific case
x=y=1/s.

» D. H. Bailey, J. M. Borwein, J. Kimberley and W. Ladd, “Computer discovery and analysis of
large Poisson polynomials,” Experimental Mathematics, 27 Aug 2016, vol. 26, 349-363,
https://www.davidhbailey.com/dhbpapers/poisson-res.pdf.
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What about the many cases with x # y?

All of the computations and results mentioned above are for the case x =y =1/s for
some positive integer s.

What about rationals x = p/s, y = q/s, with p # g7 Initial results indicated that
Kimberley's formula does not hold for these more general rationals.

Is there a generalization of Kimberley's formula that holds in these other cases? Does
the palindromic property hold for these other cases?

To address this more general problem requires many times more computation than for
the x =y = 1/s cases.

A familiar refrain: Help! More powerful computational tools are required.
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2022: New computational tools for Poisson polynomials

1. A new high-level multiprecision package, based on integer arithmetic, that is
approximately 3X faster than before, nearly as fast as using MPFR / GMP.
2. A new 4-level multipair PSLQ program:
a Double precision (approx. 15 digit accuracy).
b Quad precision (approx. 32 digit accuracy).
¢ Medium multiprecision: varies from 100 digits to 1200 digits on Poisson problems.
d Full multiprecision: varies from 2500 digits to 100,000 digits on Poisson problems.
3. The code does as much computation as possible in double precision; automatically
shifts to higher precision when required (very challenging to reliably program).

4. Faster hardware: A 10-core MacStudio, with Apple’s low-power M1 Pro processor,
thus mercifully helping the author avoid bankruptcy from electric bills.
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2023: New computer runs

» The new software has been used to compute the minimal polynomials for the
entire set of cases (p/s, q/s), where 1 < p < g <s/2 and 10 < s < 36, and also
for s = 38,40,42 and s = 50 (a total of 2206 cases).

» These runs required up to 32,000-digit floating-point arithmetic and thousands of
processor-core hours run time.

Results: The following modification of Kimberley's formula appears to hold in all cases
(1<p<qg<s/2andgcd(p,q,s)=1):

1. For the cases x = y = p/s, Kimberley's formula holds; further, for fixed s, all
these cases share the same minimal polynomial).

2. For the cases x = p/s, y = q/s with s odd, Kimberley's formula holds (except for
a few where the correct degree is half Kimberley's rule).

3. For the cases x = p/s, y = q/s, with s even and both p and g odd, Kimberley's
formula holds (except for a few where the correct degree is half Kimberley's rule).

4. For the cases x = p/s, y = q/s, with s even and one of p or q is even, the correct
degree is twice Kimberley's formula (except for a few where the correct degree is

equal to Kimberley's rule).
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Sharing of minimal polynomials

One intriguing finding from the latest computations is that many cases for a given s
share the same minimal polynomial, even though the o numerical values are different.

For example, when s = 17, the (x, y) cases
(1/17,1/17),(2/17,2/17), (3/17,3/17),(5/17,5/17), (6/17,6/17), (7/17,7/17), (8/17,8/17)
all satisfy the same degree-64 minimal polynomial:

+ 14 6912a' — 1023008c” + 535196800cc® 4 7742027760 — 2451239864832 + 1402646657235520:° — 24942656 04c” + 184534455222150320°

+ 21614293158955264° — 1840469978381611680x'* + 26560170568288794240cr™ — 219265475764921569840cr'” + 1143750465759937207408cr® — 45639326302480484354240™
+ 21048406812137688311168c'® — 123756069205191278016740x'® + 662708878348007477250816c7 — 2671051287612630032421280¢'® + 7693234584556635821267584cx

— 148625480974742408871467680.°° + 11985439092809681992002048:*" + 443516683493965818704087360r> — 2596256649379724673008072960x°

+ 8031861158996767039482386640x> — 17896020953890515331495330520r>° + 30555528333346087776062893760¢™° — 415627148799950632383503654401”

+ 4903963676671959157531751248”® — 60195172535835362192319098880>° + 8780067564346216307831284640*" — 133345484830074810462388122880r*"

+ 17362857489410448630866293318: — 17345855620600509241800189696x>* + 11966489230110362129440701856¢** — 38981193223874264420557564160x >

— 2451083039727870545406928048.*® + 4743446591055878746050587136cr" — 3881818694457698660972764704*® + 2101492037309911776817793664 >

— 8300748408136696086109513520*" + 2693667927571863030378749440*! — 06596567511508184274883040r*? + 46311532722057913438161792x**

— 22155672572673873192657168* + 8153783303351403692882044"® — 2079969173966458011379616"® + 331427117746835861477504c"’ — 18856552838875733014756x"®

— 7235322856083561662208x* + 3292609205079608858656x°° — 738833647673944491136¢° + 76552613117134517712a” — 1424154241008650752x° + 342676113911934816¢™*
— 898252847271904000™ + 3891480748650616°° — 1548542544253440," — 3704022727520 + 4042241478400 — 125943824 + 620134400

— 6702400 — 1408 + 1a®
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July 2023: New results: The Poisson 1 function
The 2013 study mentioned the closely related function

¢2(X’y):i Z cos(7rmx)cos(7rny).

2 2 2
d m,n even m<+n

As with ¢2(x,y), the authors found that when x and y are rational, then
Pa(x,y) =1/ - log(B(x,y)), for algebraic 5(x,y).

As the present study was being concluded, DHB discovered formulas and
computational techniques to find minimal polynomials for 1»(x, y). Intriguing initial
results have been obtained.

However, the computations and analysis here are significantly more challenging than
with ¢2(x,y), requiring, among other things, much higher precision — up to
100,000-digit or more floating-point arithmetic even for modest-sized s.

Details will be provided in a separate report.
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Conclusions

» New software has been used to compute the minimal polynomials for «
corresponding to ¢2(x, y), for a total of 2206 cases. These runs required up to
32,000-digit floating-point and several CPU-months run time.

> A modification of Kimberley's formula appears to hold in all cases, although no
proof is known. For a given s, many cases share the same minimal polynomial.

» Exploring 3-D Poisson polynomials and polynomials associated with 2(x, y) will
require much more computation, with even higher levels of numeric precision
(100,000 or more digits).

» A familiar refrain: Help! More powerful computational tools are required.

This talk is available at
https://www.davidhbailey.com/dhbtalks/dhb-fpt-2023.pdf.

Full results are available at
https://www.davidhbailey.com/dhbpapers/poisson-2023.pdf.
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