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Experimental Mathematics:
The Application of High-Performance
Computing to Mathematical Research

An experimental approach ties mathematical research to Moore’s Law,
which has been advancing at an exponential rate for over 40 years.

Additional advances have resulted from improved algorithms, numerical
techniques and progamming methodology.

Experimental mathematics is a delightfully multidisciplinary activity --
pure mathematicians, applied mathematicians, computer scientists,
numerical analysts and physicists have all made notable contributions.

Experimental mathematics is a delightfully non-hierarchical activity --
even undergraduate students, armed with good programming skills, can
obtain significant research results.
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Top500 Performance Trends
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The “Franklin” System at LBNL’s
NERSC Computer Center

9,660 dual-core Opteron computational nodes (19,320 CPUs).

100 Tflop/s (100 trillion floating-point operations / sec) peak performance.

38.6 Tbytes (38.6 trillion bytes) main memory.
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The SciDAC Performance Engineering
Research Institute (PERI)

Participating institutions:  Argonne,
LBNL, LLNL, Oak Ridge, Rice, UCSD, U
Maryland, UNC, USC, U Tennessee.

Lead investigators:  Robert Lucas,
USC/ISI and David H Bailey, LBNL.

Funding:  $4 million per year.

Mission:  To improve the performance of
DOE-funded science applications on
high-end computing platforms.

Component activities:

Performance modeling.

Automatic performance tuning.

Application engagement.



6

Key Ideas in My Research and Their
Roots in Peter Borwein’s Work

Employing custom variations of FFTs to accelerate computations on new
vector and parallel computer architectures.

This dates back to 1985, when I used Jon and Peter’s quartic algorithm to
compute pi to millions of decimal digits on a new Cray-2 supercomputer.

Employing Ferguson’s “PSLQ” algorithm to discover new mathematical
identities, based on high-precision numerical values of constants.

The first instance was in 1996, when Peter, Simon Plouffe and myself used a
PSLQ program to discover the BBP formula for pi.

Proving that certain classes of explicit constants are “normal” (i.e., that
the digit sequence is “random” in a certain specific sense).

This work, done with Richard Crandall, had its roots in the BBP formula.

Computing high-precision values of multi-zeta constants and identifying
them in terms of more basic constants.

I utilized Peter’s formula for zeta(n) to compute high-precision values.

Using the tanh-sinh and other Euler-Macluarin based schemes to
compute definite integrals to very high precision.

This had its roots about 12 years ago when working on a problem of Peter
Borwein to numerically integrate functions of the form f(t) exp(-t^2/2).
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High-Precision Computation

Most scientific computation utilizes floating-point arithmetic (although some,
such genome sequence analysis, use only integer computations).

Present-day computer hardware supports three types of floating-point:
IEEE 32-bit (“single precision”), roughly 6 digits.
IEEE 64-bit (“double precision”), roughly 16 digits.
IEEE 80-bit (“extended precision”), roughly 18 digits (Intel and AMD).

For a growing number of computations, much higher precision is needed:
Quantum field theory.
Supernova simulation.
Semiconductor physics.
Planetary orbit calculations.
Ising theory of mathematical physics.
Experimental and computational mathematics.
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Using FFTs to Accelerate High-
Precision Arithmetic

Let A and B be high-precision numerical values represented as n-long
strings of computer words, where each word contain b bits of precision.

Note that C = A x B is merely the convolution of A and B, where A and B
are first extended to length 2n by padding with zeros:

Ck = Sum Aj Bk-j

This requires 2 n2 individual arithmetic operations.  But convolutions can
be performed rapidly using FFTs:

C = FFT-1 [FFT(A)  FFT(B)]

If this is done efficiently, the operation count is reduced to 15 n log2 n
operations, which is fewer than the standard count when n > 16.

In real-world computations, when all the software overhead is taken into
account, FFT-based arithmetic is faster for computations of 1000+ digits.

Other operations, including division and square roots, can be performed
via Newton iterations, based on FFT-accelerated multiplication.

Algorithms of Richard Brent and Peter and Jon Borwein can be used to
compute high-precision exp and trig functions, and constants such as pi.
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LBNL’s High-Precision Software:
ARPREC and QD

QD:  Double-double (32 digits) and quad-double (64 digits) .
ARPREC:  Arbitrary precision (hundreds or thousands of digits).
Low-level routines written in C++.
High-level C++ and F-90 translation modules permit use with existing
programs with only minor code changes.
Integer, real and complex datatypes.
Many common functions:  sqrt, cos, exp, gamma, etc.
PSLQ, root finding, numerical integration.
An interactive “Experimental Mathematician’s Toolkit.”
Can easily be incorporated into a highly parallel program.

Available at:  http://www.experimentalmath.info

Other widely used high-precision software:
GMP:  http://gmplib.org
MPFR:  http://www.mpfr.org

D. H. Bailey, Y. Hida, X. S. Li and B. Thompson, "ARPREC: An Arbitrary Precision Computation Package,"
manuscript, Sept 2002, http://crd.lbl.gov/~dhbailey/dhbpapers/arprec.pdf.



10

The PSLQ Integer Relation Algorithm:
A Tool to Discover Mathematical Relationships

Let (xn) be a given vector of real numbers.  An integer relation algorithm
finds integers (an) such that

1.  H. R. P. Ferguson, D. H. Bailey and S. Arno, “Analysis of PSLQ, An Integer Relation Finding Algorithm,”
Mathematics of Computation, vol. 68, no. 225 (Jan 1999), pg. 351-369.
2.  D. H. Bailey and D. J. Broadhurst, “Parallel Integer Relation Detection: Techniques and Applications,”
Mathematics of Computation, vol. 70, no. 236 (Oct 2000), pg. 1719-1736.

(or within “epsilon” of zero, where epsilon = 10-p and p is the precision).

At the present time the “PSLQ” algorithm of mathematician-sculptor
Helaman Ferguson is the most widely used integer relation algorithm.  It
was named one of ten “algorithms of the century” by Computing in Science

and Engineering.

PSLQ (or any other integer relation scheme) requires very high precision (at
least n*d digits, where d is the size in digits of the largest ak), both in the
input data and in the operation of the algorithm.
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Decrease of log10(min |xi|) in PSLQ
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Application of PSLQ:
Bifurcation Points in Chaos Theory

exhibits 8-way periodicity instead
of 4-way periodicity.

By means of an iterative scheme,
one can obtain the numerical
value of t to any desired precision:

Let t be the smallest r such that
the “logistic iteration”

3.54409035955192285361596598660480454058309984544457367545781…

Applying PSLQ to the vector (1, t, t2, t3, …, t12), one finds that t satisfies:

David H. Bailey, Jonathan M. Borwein, Vishal Kapoor and Eric Weisstein, "Ten Problems in Experimental
Mathematics," American Mathematical Monthly, vol. 113, no. 6 (Jun 2006), pg. 481-409.
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Application of PSLQ:  Identifying Ten
Constants from Quantum Field Theory

where
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Some Supercomputer-Class PSLQ
Solutions

Identification of B4, the fourth bifurcation point of the logistic iteration:

Integer relation of size 121.  10,000-digit arithmetic.

Identification of Apery sums.

15 integer relation problems, with size up to 118.  5,000-digit arithmetic.

Identification of Euler-zeta sums.

Hundreds of integer relation problems, each of size 145.   5,000-digit arithmetic.

Finding recursions in Ising integrals.

Over 2600 high-precision numerical integrations, and integer relation detections.
1500-digit arithmetic.  Run on Apple system at Virginia Tech – 12 hours on
64 CPUs.

Finding a relation involving a root of Lehmer’s polynomial.

Integer relation of size 125.  50,000-digit arithmetic. Utilizes 3-level, multi-pair
parallel PSLQ program. Run on IBM parallel system – 16 hours on 64 CPUs.

1.  D. H. Bailey and D. J. Broadhurst, "Parallel Integer Relation Detection: Techniques and Applications,"
Mathematics of Computation, vol. 70, no. 236 (Oct 2000), pg. 1719-1736.

2.  D. H. Bailey, D. Borwein, J. M. Borwein and R. Crandall, “Hypergeometric Forms for Ising-Class Integrals,"
Experimental Mathematics, vol. 16 (2007), no. 3, pg. 257-276.
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Fascination With Pi

Newton (1670):

“I am ashamed to tell you to how many figures I carried these
computations, having no other business at the time.”

Carl Sagan (1986):

In his book “Contact,”  the lead scientist (played by Jodie
Foster in the movie) looked for patterns in the digits of pi.

New York Times (2007):

On March 14 (03/14) the daily crossword puzzle featured a pi
theme:  key answers included “pi” in the place of a single
character.
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Fax from “The Simpsons” Show
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The Borwein-Plouffe Observation

In 1996, Peter Borwein and Simon Plouffe observed that the following well-
known formula for loge 2

leads to a simple scheme for computing binary digits at an arbitrary starting
position (here {} denotes fractional part):
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Fast Exponentiation Mod n

The exponentiation (2d-n mod n) in this formula can be evaluated very rapidly
by means of the binary algorithm for exponentiation, performed modulo n:

Example problem:  Calculate the last digit of 317 (i.e., compute 317 mod 10).

Algorithm A:  3x3x3x3x3x3x3x3x3x3x3x3x3x3x3x3x3 = 129140163.  Ans =3.

Algorithm B:  317 = (((32)2)2)2 x 3 = 129140163.   Ans = 3.

Algorithm C:  Same as Algorithm B, but reduce mod 10 after each multiply
operation:

32 mod 10 = 9;  92 mod 10 = 1;  12 mod 10 = 1;  12 mod 10 = 1;  1 x 3 = 3.
Ans = 3.

Note that with Algorithm C, we never have to deal with integers greater than
81.  This is a huge savings when we deal with very large powers.
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The BBP Formula for Pi

In 1996, Simon Plouffe used DHB’s PSLQ program and high-precision
arithmetic software to discover this new formula for pi:

This formula was found by searching for integer relations between pi and
about 25 other constants with known series formulas like log(2).

This formula permits one to compute binary (or hexadecimal) digits of pi
beginning at an arbitrary starting position.

Recently it was proven that no base-n formulas of this type exist for pi,
except when n = 2m.

1.  D. H. Bailey, P. B. Borwein and S. Plouffe, “On the Rapid Computation of Various Polylogarithmic
Constants,” Mathematics of Computation, vol. 66, no. 218 (Apr 1997), pg. 903-913.

2.  J. M. Borwein, W. F. Galway and D. Borwein, “Finding and Excluding b-ary Machin-Type BBP
Formulae,” Canadian Journal of Mathematics, vol. 56 (2004), pg. 1339-1342.
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Some Other BBP-Type Formulas

Papers by D. H. Bailey, P. B. Borwein, S. Plouffe, D. Broadhurst and R. Crandall.
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Normality (Digit Randomness) of
Mathematical Constants

A real number x is said to be b-normal (or normal base b) if every m-long
string of base-b digits appears, in the limit, with frequency b-m.

Whereas it can be shown that almost all real numbers are b-normal (for any
b), there are only a handful of proven explicit examples.

It is still not known whether any of the following are b-normal for any b:
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A Connection Between BBP Formulas
and Normality

Let {} denote fractional part.  Consider the sequence defined by x0 = 0,

Result:  log(2) is 2-normal if and only if this sequence is equidistributed in
the unit interval.

In a similar vein, consider the sequence x0 = 0, and

Result:  pi is 16-normal if and only if this sequence is equidistributed in the

unit interval.

A similar result holds for any constant that possesses a BBP-type formula.

D. H. Bailey and R. E. Crandall, "On the Random Character of Fundamental Constant Expansions,"
Experimental Mathematics, vol. 10, no. 2 (Jun 2001), pg. 175-190.
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A Class of Provably Normal Constants

We have also shown that this constant (among many others) is 2-normal:

This means, for instance, that the entire works of William Shakespeare are
contained, in coded form, in the base-16 digits of this number.

These results have led to a practical and efficient pseudo-random number
generator based on the binary digits of alpha.

1.  D. H. Bailey and R. E. Crandall, “Random Generators and Normal Numbers,” Experimental Mathematics,
vol. 11, no. 4 (2002), pg. 527-546.
2.  D. H. Bailey, "A Pseudo-Random Number Generator Based on Normal Numbers," manuscript, Dec 2004,
http://crd.lbl.gov/~dhbailey/dhbpapers/normal-random.pdf.



24

The “Hot Spot” Lemma for Proving
Normality

We are now able to prove normality for these alpha constants very simply,
by means of a new result that we call the “hot spot” lemma, proven using
ergodic theory:

Hot Spot Lemma: Let {} denote fractional part.  Then x is b-normal if and
only if there is no y in [0,1) such that

Paraphrase:  x is b-normal if and only if it has no base-b hot spots.

Sample Corollary:  If, for each m and n, no m-long string of digits appears in
the first n digits of the base-2 expansion of x more often than 1,000 n 2-m

times, then x is 2-normal.

D. H. Bailey and M. Misiurewicz, "A Strong Hot Spot Theorem," Proceedings of the American Mathematical

Society, vol. 134 (2006), no. 9, pg. 2495-2501.
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A Curious Observation

About 12 years ago, Peter Borwein asked me to calculate numerical values
of the definite integrals of the form

In doing these computations I was surprised to find that the results were
remarkably accurate, even when using just a simple block-function or
trapezoidal rule approximation, with only a modest number of grid points.

Why is this?
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The Euler-Maclaurin Formula of
Numerical Analysis

[Here h = (b - a)/n and xj = a + j h.  Dm f(x) means m-th derivative of f.]

Note when f(t) and all of its derivatives are zero at a and b (as in a bell-
shaped curve), the error E(h) of a simple trapezoidal approximation to the
integral goes to zero more rapidly than any power of h.

K. Atkinson, An Introduction to  Numerical Analysis, John Wiley, 1989, pg. 289.
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The Tanh-Sinh Algorithm for Numerical
Integration

Given f(x) defined on (-1,1), define g(t) = tanh (pi/2 sinh t).  Then setting
x = g(t) yields

where xj = g(hj) and wj = g’(hj).   Since g’(t) goes to zero very rapidly for
large t, the product  f(g(t)) g’(t)  typically is a nice bell-shaped function.  For
such functions, the Euler-Maclaurin formula of numerical analysis implies
that the simple summation above is remarkably accurate.  Reducing h by
half typically doubles the number of correct digits.

Tanh-sinh quadrature is the best integration scheme for functions with
vertical derivatives or blow-up singularities at endpoints, or for any function
at very high precision (> 1000 digits).

1.  D. H. Bailey, X. S. Li and K. Jeyabalan, “A Comparison of Three High-Precision Quadrature Schemes,”
Experimental Mathematics, vol. 14 (2005), no. 3, pg. 317-329.
2.  H. Takahasi and M. Mori, “Double Exponential Formulas for Numerical Integration,” Publications of
RIMS, Kyoto University, vol. 9 (1974), pg. 721–741.
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Example Application of Tanh-Sinh
Integration

The following integral cannot be evaluated symbolically by either Maple
(version 11) or Mathematica (version 6.0):

However, by employing tanh-sinh quadrature (which produces the
numerical value shown above) followed by the Inverse Symbolic Calculator
(ISC 2.0), available at  http://ddrive.cs.dal.ca/~isc, one obtains

This has been numerically verified to over 1000-digit precision.
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A Log-Tan Integral Identity from
Mathematical Physics

This conjectured identity arises in
mathematical physics from
analysis of volumes of ideal
tetrahedra in hyperbolic space.

We have verified this numerically
to 20,000 digits using highly
parallel tanh-sinh quadrature, but
no formal proof is known.

D. H. Bailey, J. M. Borwein, V. Kapoor and E.
Weisstein, “Ten Problems in Experimental
Mathematics,” American Mathematical Monthly,
vol. 113, no. 6 (Jun 2006), pg. 481-409 .
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Parallel Evaluation
of the log-tan Integral

1-CPU timings are sums of timings from a 64-CPU run, where barrier waits
and communication were not timed.

The performance rate for the 1024-CPU run is 690 Gflop/s.

D. H. Bailey and J. M. Borwein, “Highly Parallel, High-Precision Numerical Integration,” International Journal

of Computational Science and Engineering, to appear, http://crd.lbl.gov/~dhbailey/dhbpapers/quadparallel.pdf.



31

Integrals from Ising Theory of
Mathematical Physics

We recently applied our methods to study three classes of integrals that
arise in the Ising theory of mathematical physics:

D. H. Bailey, J. M. Borwein and R. E. Crandall, “Integrals of the Ising Class,” Journal of Physics A:

Mathematical and General, vol. 39 (2006), pg. 12271-12302.

where (in the last line)
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Computing and Evaluating Cn

where K0 is the modified Bessel function.

We used this formula to compute 1000-digit numerical values of various
Cn, from which the following results and others were found, then proven:

We first showed that the multi-dimensional Cn integrals can be
transformed to much more manageable 1-D integrals:
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Limiting Value of Cn

The Cn numerical values approach a limit:

What is this number?  We copied the first 50 digits of this numerical value
into the online Inverse Symbolic Calculator (ISC), now available at

     http://ddrive.cs.dal.ca/~isc

The result was:

where gamma denotes Euler’s constant.  This result is now proven and has
been generalized to an asymptotic expansion.
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Other Ising Integral Evaluations

where Li denotes the polylogarithm function.
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The Ising Integral E5

We were able to reduce E5, which is a 5-D integral, to an extremely
complicated 3-D integral (see below).

We computed this 3-D integral to 250-digit precision, using a parallel high-
precision 3-D quadrature program.  Then we used PSLQ to discover the
evaluation given on the previous page.
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Recursions in Ising Integrals

Consider the 2-parameter class of Ising integrals

(which have connections to quantum field theory).  After computing 1000-
digit numerical values for all n <= 36 and all k <= 75 (2660 individual
quadrature calculations, performed in parallel), and applying PSLQ, we
found linear relations in the rows of this array.  For example, when n = 3:

These recursions have been proven for n = 1, 2, 3, 4.  Similar, but more
complicated, recursions have been found for larger n (see next page).

D. H. Bailey, D. Borwein, J. M. Borwein and R. E. Crandall, “Hypergeometric Forms for Ising-Class Integrals,”
Experimental Mathematics, vol. 16 (2007), no. 3, pg. 257-276.
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Experimental Recursion for n = 24

Jonathan Borwein and Bruno Salvy have now given an explicit form for
these recursions, together with code to compute any desired case.

J. M. Borwein and B. Salvy, “A Proof of a Recursion for Bessel Moments,” Experimental Mathematics, to
appear, 2008, http://users.cs.dal.ca/~jborwein/recursion.pdf.



38

Some Results from a New Study of
Bessel Moments (Mar. 2008)

where F denotes Gauss’ hypergeometric function, and cn,k = n! k! 2-n Cn,k.

These and numerous other results are available in a new paper on Bessel
moments, which have application not only in Ising theory, but also in
quantum field theory, condensed matter theory and “diamond lattice” walks.

D. H. Bailey, J. M. Borwein, D. Broadhurst and M. L. Glasser, “Elliptic Integral Evaluations of Bessel
Moments,” Journal of Physics A, vol. 41 (2008), pg. 205203, http://crd.lbl.gov/~dhbailey/dhbpapers/b3g.pdf.
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Some Other New Indentities Found in
Bessel Moment Study

The first identity has been numerically verified to 14,285-digit precision.

The second identity holds for every pair of integers (n,k) with 2*k in [2, n].

The Bessel moment paper gives analytic evaluations of all definite integrals
involving products up to six Bessel functions.  A computational-
experimental methodology was employed throughout the process:

D. H. Bailey, J. M. Borwein, D. Broadhurst and M. L. Glasser, “Elliptic Integral Evaluations of Bessel
Moments,” Journal of Physics A, vol. 41 (2008), pg. 205203, available at
http://crd.lbl.gov/~dhbailey/dhbpapers/b3g.pdf.
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An Example of Computations Involved
in the Bessel Moment Study
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Cautionary Example

These constants agree to 42 decimal digit accuracy, but are NOT equal:

Richard Crandall has now shown that this integral is merely the first term of
a very rapidly convergent series that converges to pi/8:

1.  D. H. Bailey, J. M. Borwein, V. Kapoor and E. Weisstein, “Ten Problems in Experimental Mathematics,”
American Mathematical Monthly, vol. 113, no. 6 (Jun 2006), pg. 481-409 .

 2.  R. E. Crandall, “Theory of ROOF Walks, 2007, available at
http://people.reed.edu/~crandall/papers/ROOF.pdf
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Summary

Due to seminal early contributions by researchers such as Peter Borwein,
tremendous progress has been made recently in experimental math.

Software-based facilites now permit even very complicated computations
to be performed with high levels of precision, requiring only minor
modification to existing computer programs.

Symbolic computing tools continue to advance in sophistication and
usability.

Continued rapid progress is very likely, due both to the inexorable upward
march of Moore’s Law, and also to an influx of young researchers highly
skilled in computing.

This talk is available at:

http://crd.lbl.gov/~dhbailey/dhbtalks/dhb-peter-borwein.pdf


